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Abstract. We classify integrable bounded simple weight modules over classical Lie superal-
gebras at infinity. We also study the categories of such modules, and we prove that for most
of the classical Lie superalgebras at infinity the respective category is semisimple.

1. Introduction

In the last decade there has been an active study of various categories of modules over
finitary simple Lie algebras. Over the field of complex numbers C, up to isomorphism there
are three such Lie algebras: sl(∞), sp(∞) and o(∞) [Bar99]. In [PS11, D-CPS16] categories
of integrable modules have been studied. More recently, in [Nam17, CP19, PS19], analogs
of the category O have been investigated.

In [Ser11], V. Serganova has demonstrated that passing to the super setting is very useful.
In particular, she showed that the equivalence of the categories of tensor modules over o(∞)
and sp(∞), discovered in [SS15] and [D-CPS16], admits a natural explanation in terms of
the category of tensor modules over the Lie superalgebra osp(∞|∞). Moreover, this latter
category turns out to be equivalent to both former categories.

Motivated by this, we decided to study the extension, to the Lie superalgebra setting, of
the recent classification of integrable bounded simple weight modules of sl(∞), sp(∞) and
o(∞) obtained in [GP20]. The Lie superalgebras we consider are listed in Table 1 below.
Beyond the technical challenge of classifying integrable bounded simple weight modules over
these Lie superalgebras, we have been interested in the respective categories of integrable
bounded weight modules. Over finitary Lie algebras, the category of bounded weight modules
is semisimple due to an extension of Hermann Weyl’s semisimplicity theorem proved by the
second author and V. Serganova in [PS11]. It is natural to ask whether semisimplicity holds
also in the superalgebra case. We show that the categories of integrable bounded weight
modules are indeed semisimple for all superalgebras g we consider, except for g isomorphic
to sl(∞|1) or to q(∞) where the category is “almost” semisimple. This semisimplicity result
shows how special integrable bounded weight modules are.

The paper is organized as follows. In Section 2 we give some relevant basic definitions. In
Section 3 we discuss the classification of integrable bounded simple weight modules of the
Lie algebra gl(∞). Our main classification result is presented in Section 5. The categories
of integrable bounded weight modules for the various Lie superalgebras g are discussed in
Section 6. Finally, in the Appendix, we discuss the Ext’s in the category of weight modules
and provide a sufficient condition for splitting of extensions of locally simple g-modules in a
more general setting.
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Notation. Set Z× := Z \ {0}. All vector spaces, algebras, and tensor products are defined
over the field of complex numbers C, unless otherwise stated. The superscript ∗ always
indicates dual vector space. For any Lie superalgebra k = k0̄ ⊕ k1̄, set k′ := [k, k], and
denote by U(k) the universal enveloping algebra of k. If T ⊆ U(k) is a subset, then we let
CU(k)(T ) := {x ∈ U(k) | [x, T ] = 0} denote the centralizer of T in U(k). The symbol D (or
E) stands for semidirect sum of Lie superalgebras, the round side pointing toward the ideal.
By 〈·〉R we denote span over a ring R. If M = M0̄ ⊕M1̄ is a Z2-graded vector space, then
ΠM is the space with changed parity, i.e., (ΠM)0̄ = M1̄ and (ΠM)1̄ = M0̄. The parity of a
homogeneous vector v ∈M will be denoted by |v| ∈ Z2, and the dimension of M is denoted
by dimM0̄| dimM1̄. Unless otherwise stated, by homomorphisms of Z2-graded vector spaces
we mean linear transformations that preserve parity. For a ∈ Z>0, the a-th symmetric and
exterior powers of a Z2-graded vector space M are given, respectively, by

SaM :=
⊕
i+j=a

SiM0̄ ⊗ ΛjM1̄, ΛaM :=
⊕
i+j=a

ΛiM0̄ ⊗ SjM1̄,

where Si and Λi denote the usual i-th symmetric and exterior powers of a vector space.

Acknowledgments. I.P. has been supported in part by DFG grant PE 980-7/1. L.C. was
supported by CAPES grant 88881.119190/2016-01. L.C. acknowledges the hospitality of
Jacobs University. The authors would like to thank Vera Serganova for helpful discussions
and a referee for the thorough reading of our paper.

2. Preliminaries

Throughout the paper we denote by g = lim−→ g(n) one of the Lie superalgebras defined as
the direct limit of the following embeddings g(n) ↪→ g(n+ 1):

(a) sl(∞|m) : sl(n|m) ↪→ sl(n+ 1|m);
(b) sl(∞|∞) : sl(n+ 1|n) ↪→ sl(n+ 2|n+ 1);
(c) ospB(∞|2k) : osp(2n+ 1|2k) ↪→ osp(2n+ 3|2k);
(d) ospB(∞|∞) : osp(2n+ 1|2n) ↪→ osp(2n+ 3|2n+ 2);
(e) ospB(m|∞) : osp(m|2n) ↪→ osp(m|2n+ 2), for m odd;
(f) ospC(2|∞) : osp(2|2n) ↪→ osp(2|2n+ 2);
(g) ospD(∞|2k) : osp(2n|2k) ↪→ osp(2n+ 2|2k);
(h) ospD(∞|∞) : osp(2n|2n) ↪→ osp(2n+ 2|2n+ 2);
(i) ospD(m|∞) : osp(m|2n) ↪→ osp(m|2n+ 2), for m even, m 6= 2;
(j) sp(∞) : sp(n) ↪→ sp(n+ 1);
(k) q(∞) : q(n) ↪→ q(n+ 1),

see [Pen04] for details. The first two embeddings are given respectively by

(2.1)

 A B

C D

 7→


0 0 0

0 A B

0 C D

 and

 A B

C D

 7→


0 0 0 0

0 A B 0

0 C D 0

0 0 0 0

 ,
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g g0̄ g0

sl(∞|m) gl(∞)⊕ sl(m) gl(∞)⊕ sl(m)

sl(∞|∞) gl(∞)⊕ sl(∞) gl(∞)⊕ sl(∞)

ospB(∞|2k) oB(∞)⊕ sp(2k) oB(∞)⊕ gl(k)

ospB(∞|∞) oB(∞)⊕ sp(∞) oB(∞)⊕ gl(∞)

ospB(m|∞), m odd o(m)⊕ sp(∞) o(m)⊕ gl(∞)

ospC(2|∞) C⊕ sp(∞) C⊕ sp(∞)

ospD(∞|2k) oD(∞)⊕ sp(2k) oD(∞)⊕ gl(k)

ospD(∞|∞) oD(∞)⊕ sp(∞) oD(∞)⊕ gl(∞)

ospD(m|∞), m even, m 6= 2 o(m)⊕ sp(∞) o(m)⊕ gl(∞)

sp(∞) sl(∞) sl(∞)

q(∞) gl(∞)

Table 1. Classical Lie superalgebras at infinity, their even part and their 0-th
degree component

where the matrices 0 are assumed to be of the appropriate size. The embeddings in (a)-(k)
are respective restrictions of the embeddings in (2.1). If g is given by (a) or (b), then g is of
type A; if g is given by (c), (d) or (e), then g is of type B; if g is given by (g), (h) or (i), then
g is of type D. In all cases except (k), g admits a Z-grading g =

⊕
i∈Z gi compatible with

the Z2-grading, i.e. g0̄ =
⊕

2i gi and g1̄ =
⊕

2i+1 gi. Table 1 shows explicitly the Lie algebras
g0̄ and g0. We refer to [FSS00, Tables on Lie superalgebras, page 342] for a description of
g(n)0̄ and g(n)0.

We point out that the pairs (ospB(∞|2k), ospD(∞|2k)) and (ospB(∞|∞), ospD(∞|∞))
are pairs of isomorphic Lie superalgebras. The reader will check this using the well known
fact that the Lie algebras oB(∞) := lim−→ o(2n + 1) and oD(∞) := lim−→ o(2n) are isomorphic.
However, in this paper we consider the Lie superalgebras in a pair separately, as we equip
them (see the next section) with non-conjugate Cartan subalgebras. This makes the Lie
superalgebras in a pair "different" from the point of view of weight modules.

2.1. Generalities on g-modules. We call a g-module M integrable if for every m ∈ M ,
g ∈ g one has

dim〈m, gm, g2m, . . .〉C <∞.
Let h ⊆ g denote the splitting Cartan subalgebra of diagonal matrices in the Lie algebra

g0̄ [D-CPS07]. In other words, h is the direct limit of the diagonal Cartan subalgebras of
the Lie algebras g(n)0̄ under the fixed embeddings g(n)0̄ ↪→ g(n + 1)0̄. A g-module M is a
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weight module (with respect to h) if

M =
⊕
λ∈h∗

Mλ,

where Mλ := {m ∈ M | hm = λ(h)m, ∀ h ∈ h}. The support of M is the set SuppM :=
{λ ∈ h∗ | Mλ 6= 0} ⊆ h∗. The elements λ ∈ SuppM are the weights of M , and nonzero
vectors inMλ are called weight vectors of weight λ. A weight moduleM is said to be bounded
if there exists k ∈ Z>0 such that dimMλ ≤ k for all λ ∈ SuppM .

Under the adjoint action of h on g we have the decomposition

g = g0 ⊕
⊕
α∈∆

gα,

where g0 = h if g � q(∞), and ∆ := Supp g \ {0}. The elements of ∆ are the roots of g,
and ∆ is the root system of g. To describe ∆, we note first that g ⊆ gl(∞|∞) = lim−→ gl(n|n)

and that matrices in gl(∞|∞) are indexed by Z× × Z×, where (0, 0) is identified with the
intersection of the two orthogonal lines that separate the blocks of the matrices in gl(∞|∞).
Let Ei,j ∈ gl(∞|∞) denote the elementary matrix with entry 1 at position (i, j) and zeros
elsewhere. For any i ∈ Z× we let εi ∈ h∗ be the linear functional defined by εi(Ej,j) = δi,j
for all j ∈ Z×, and we set δi := ε−i, for any i ∈ Z>0. We should point out that the εi’s could
be indexed by an arbitrary countable set, not necessarily Z×. We fix Z× for convenience.

The root system of g is given as follows:
sl(∞|m) : ∆ = {εi − εj , δr − δs, ±(εi − δr) | i, j ∈ Z>0 ∩ [0,m], r, s ∈ Z>0};
sl(∞|∞) : ∆ = {εi − εj , δr − δs, ±(εi − δr) | i, j ∈ Z>0, r, s ∈ Z>0};
ospB(∞|2k) : ∆ = {±εi ± εj , ±δr ± δs, ±2εi, ±δr, ±εi ± δr, ±εi | i, j ∈ Z>0 ∩ [0, k], r, s ∈ Z>0};
ospB(∞|∞) : ∆ = {±εi ± εj , ±δr ± δs, ±2εi, ±δr, ±εi ± δr, ±εi | i, j ∈ Z>0, r, s ∈ Z>0};
ospB(m|∞) : ∆ = {±εi ± εj , ±δr ± δs, ±2εi, ±δr, ±εi ± δr, ±εi | i, j ∈ Z>0, r, s ∈ Z>0 ∩ [−m, 0]};
ospC(2|∞) : ∆ = {±εi ± εj , ±2εi, ±εi ± δ1 | i, j ∈ Z>0};
ospD(∞|2k) : ∆ = {±εi ± εj , ±δr ± δs, ±2εi, ±εi ± δr | i, j ∈ Z>0, r, s ∈ Z>0 ∩ [−k, 0]};
ospD(∞|∞) : ∆ = {±εi ± εj , ±δr ± δs, ±2εi, ±εi ± δr | i, j ∈ Z>0, r, s ∈ Z>0};
ospD(m|∞) : ∆ = {±εi ± εj , ±δr ± δs, ±2εi, ±εi ± δr | i, j ∈ Z>0 ∩ [0,m], r, s ∈ Z>0};
sp(∞) : ∆ = {εi − εj , −εi − εj , εi + εj , 2εi) | i, j ∈ Z>0};
q(∞) : ∆ = {εi − εj | i, j ∈ Z>0}.

If g � q(∞), then dim gα = 1|0 or dim gα = 0|1 for every α ∈ ∆. In that case, given
±α ∈ ∆ we fix X±α ∈ g±α \{0} so that the nonzero coordinates of hα := [Xα, X−α] ∈ h with
respect to the basis {Ei,i | i ∈ Z×} of the subalgebra of diagonal matrices in gl(∞|∞) are
equal to 1 or −1. The root spaces of q(∞) have dimension 1|1. In addition, here g0 = h⊕h1̄,
and dim h1̄ = 0|∞. Finally, for any g and any n ∈ Z>0, we define

h(n) := h ∩ g(n), and ∆(n) := {α ∈ ∆ | gα ⊆ g(n)}.
Let n,m ∈ Z>0 ∪ {∞}. Throughout the paper, the expression

∑n
i λiδi +

∑m
i µiεi

will be identified with the vector (λ|µ) := (. . . , λ2, λ1|µ1, µ2, . . .) ∈ Cn × Cm; the vector
(. . . , c, c|d, d, . . .) ∈ Cn × Cm with c, d ∈ C will be denoted by (c(n)|d(m)). Therefore, for
g = gl(n|m) or g = osp(n|m) we can identify h(n)∗ with Cn × Cm. If g = sl(n|m) with
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n 6= m, then we also can think of (λ|µ) ∈ Cn×Cm as a weight of g: we consider the image of
(λ|µ) in h(n)∗ under the projection (λ|µ) 7→ (λ|µ)+C(1(n)|−1(m)). If g = sl(n) or g = sp(n),
then we can think of λ ∈ Cn as a weight of g by considering the image of λ in h(n)∗.

In what follows, we normalize the marks of a weight of sl(n) in such a way that the last
mark is zero. Then we have a well-defined correspondence between weights and partitions.

2.2. Splitting Borel subalgebras. Splitting Borel subalgebras of g are determined by tri-
angular decompositions of ∆, which in turn are determined by (non-unique) elements of
(〈∆〉R)∗ (see [DP98, Proposition 2]). Namely, a given φ ∈ (〈∆〉R)∗ determines the decompo-
sition

∆ = ∆− t∆+ where ∆± = {α ∈ ∆ | φ(α) ≷ 0}.
The set ∆+ is called the set of positive roots associated to φ. The splitting Borel subalgebra
corresponding to this decomposition is b := h E n, where

n =
⊕
α∈∆+

gα.

We now present an explicit description of splitting Borel subalgebras in terms of linear
orders on countable sets. Recall that δi := ε−i for every i ∈ Z>0. Suppose g = sl(∞|∞). In
this case, splitting Borel subalgebras of g are parameterized by linear orders ≺ on Z×. More
precisely, the set of positive roots corresponding to a linear order ≺ is

∆(≺) = {δi − δj | −i ≺ −j, i, j ∈ Z>0} ∪ {εi − εj | i ≺ j, i, j ∈ Z>0}
∪ {δi − εj | −i ≺ j, i, j ∈ Z>0}.

If g = sl(∞|n) or q(∞), then Z× must be replaced respectively by Z×≤n and Z×>0. For
g = ospB(∞|∞) splitting Borel subalgebras of g are parameterized by pairs (≺, σ), where
≺ is a linear order on Z× and σ is a map σ : Z× → {±1}. The set of positive roots
corresponding (≺, σ) is

∆(≺, σ) = {σ(i)δi − σ(j)δj | −i ≺ −j, i, j ∈ Z>0} ∪ {σ(i)δi + σ(j)δj | i 6= j ∈ Z>0}
∪ {σ(i)εi − σ(j)εj | i ≺ j, i, j ∈ Z>0} ∪ {σ(i)εi + σ(j)εj | i 6= j ∈ Z>0}
∪ {σ(i)δi | i ∈ Z>0} ∪ {σ(i)εi | i ∈ Z<0} ∪ {σ(i)2εi | i ∈ Z>0}
∪ {σ(i)δi ± σ(j)εj | i ∈ Z<0, j ∈ Z>0}.

If g is of type ospB(∞|2k) or ospB(m|∞), then Z× gets replaced respectively by Z×≤k and
Z×≥−m. For g = ospD(∞|∞) the construction is analogous to that for ospB(∞|∞), however
in this case we need an extra condition on σ : Z× → {±1}: if ≺ admits a maximal element
i0 ∈ Z<0 then σ(i0) = 1. Hence ∆(≺, σ) is given similarly to the previous case, but now there
are no roots of the form σ(i)εi, σ(i)δi. If g is of type ospD(∞|2k), ospD(m|∞) or ospC(2|∞),
then Z× is replaced by Z×≤k, Z

×
≥−m or Z×≥−1, respectively. We point out that for ospC(2|∞)

we do not require the additional condition on the map σ. Finally, for g = sp(∞) we replace
Z× by Z>0 in the above discussion, and we define

∆(≺, σ) = {σ(i)εi − σ(j)εj | i ≺ j, i, j ∈ Z>0} ∪ {σ(i)εi + σ(j)εj | i 6= j ∈ Z>0}
∪ {2εi | i ∈ Z>0, σ(i) = 1}.
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The splitting Borel subalgebra corresponding to ∆(≺) (respectively, ∆(≺, σ)) is denoted
by b(≺) (respectively, b(≺, σ)), and n(≺) (respectively, n(≺, σ)) denotes its locally nilpotent
radical. Moreover, for every n ∈ Z>0, we set b(≺n) := b(≺)∩ g(n) (respectively, b(≺n, σ) :=
b(≺, σ) ∩ g(n)).

Throughout the paper, we denote by < the standard order on Z.

2.3. Highest weight modules. Let b = h E n be a splitting Borel subalgebra of g, and M
be a weight module. A weight vector 0 6= v ∈Mλ is a b-singular vector if n · v = 0. If M is
a cyclic g-module generated by a b-singular vector of weight λ, we say that M is a b-highest
weight module, and λ is the b-highest weight of M . Given an element λ ∈ h∗, we consider
the Verma type module associated to λ and b

Mb(λ) := Indg
b U

λ := U(g)⊗U(b) U
λ,

where Uλ is a simple b-module on which h acts via λ and n acts trivially. If g � q(∞), we
require Uλ to have dimension 1|0. If g ∼= q(∞), then the dimension of Uλ is 2[#λ/2] where
#λ denotes the number of nonzero marks of λ, and [a] denotes the greatest integer in the
number a ∈ Q. The g-module Mb(λ) admits a unique simple quotient which we denote by
Lb(λ). Accordingly, ΠLb(λ) admits a b-highest weight space of weight λ whose dimension is
dimUλ

1̄ | dimUλ
0̄ .

The Lie superalgebra g admits a natural module V with support

SuppV =



{δi, εi} if g = sl(∞|∞), sl(∞|m)

{±δi, 0,±εi} if g = ospB(∞|∞), ospB(m|∞), ospB(∞, 2k)

{±δ1,±εi} if g = ospC(2|∞)

{±δi,±εi} if g = ospD(∞|∞), ospD(m|∞), ospD(∞|2k)

{εi} if g = q(∞)

{±εi} if g = sp(∞),

where the index i runs over the respective obvious subset of Z×. To determine V up to
isomorphism for g 6= q(∞), sp(∞), we require that the weight spaces with weights δi belong
to V0̄. For g = q(∞), the support determines V up to isomorphism, and for g = sp(∞) the
weight spaces εi belong to V0̄. Furthermore, when g equals sl(∞|m) for m ∈ Z≥1 ∪ {∞} or
q(∞), then g admits a conatural module V∗ which is characterized (up to isomorphism) by
the requirement that Supp (V∗)z = − SuppVz for z ∈ Z2.

Remark 2.1. Throughout the paper, for convenience, if g is a Lie algebra we write Lb(λ),
V , and V∗ instead of Lb(λ), V, and V∗, respectively. �

3. Integrable bounded modules of gl(∞)

In what follows let hgl and hsl denote the Cartan subalgebras consisting of diagonal ma-
trices in gl(∞) := lim−→ gl(n) and sl(∞) := lim−→ sl(n), respectively.

Let M be a weight sl(∞)-module such that M = U(sl(∞)) ·m for some m ∈Mλ, where
λ ∈ SuppM ⊆ h∗sl. For any c ∈ C we extend λ to an element of hgl, which we denote also
by λ, by setting λ(E1,1) := c. Now we define the gl(∞)-module M(m, c) as follows: M(m, c)
equals M as a vector space; the action of sl(∞) on M(m, c) coincides with its action on M ;
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the action of E1,1 on m is via multiplication by c, and, for any u ∈ U(sl(∞))β (U(sl(∞))β

being a weight space of U(sl(∞)) with respect to the adjoint sl(∞)-module structure)

(3.1) E1,1um := (β + λ)(E1,1)um = (β(E1,1) + c)um.

It is easy to see that the gl(∞)-module M(m, c) is well defined.

Remark 3.1. Notice that any element ν ∈ SuppM ⊆ λ+Z∆ can be extended to an element
of h∗gl via (3.1): if ν = λ+ β then ν(E1,1) = (c+ β)(E1,1). By a slight abuse of notation, we
denote such an extension also by ν. Hence, M(m, c) is a weight gl(∞)-module. Moreover,
since for any ν, ν ′ ∈ SuppM(m, c) the weight ν − ν ′ lies in the root lattice of gl(∞) (and
hence of sl(∞)), we have ν 6= ν ′ if and only if (ν−ν ′)|hsl 6= 0. This shows that SuppM(m, c)
is obtained by extending SuppM via (3.1), and any two hgl-weights of M(m, c) are equal if
and only if their corresponding restrictions to hsl are equal. �

Let k(1) ⊂ k(2) ⊂ k(3) · · · be a sequence of inclusions of Lie superalgebras, and let
k =

⋃
n k(n) = lim−→ k(n). A k-module M is locally simple if for each m ∈ M \ {0} the

k(n)-module U(k(n))m is simple for n� 0, and M =
⋃
n�0 U(k(n))m.

Lemma 3.2. Suppose M is a locally simple weight gl(∞)-module. Then, for any λ ∈
SuppM |sl(∞) and m ∈ (M |sl(∞))

λ \ {0}, there is c ∈ C for which M ∼= M |sl(∞)(m, c).

Proof. Recall that gl(∞) = lim−→ gl(n). Set M` := U(gl(`))m for ` ≥ 1. Since M` is a simple
gl(`)-module for ` � 0, there is c ∈ C such that the action of E1,1 on M` is given by (3.1).
As M =

⋃
`�0M` the result follows. �

We recall from [GP20, Proposition 4.5] that any integrable bounded simple weight sl(∞)-
module is isomorphic to a direct limit lim−→Lb(<n)(λ(n)), where, for every n, λ(n) is a weight
of the following types:

(a) (1(bn), 0(n−bn)),
(b) (an, 0

(n−1)),
(c) (0(n−1),−an),
(d) (µ1, . . . , µk, 0

(n−k)),
(e) (0(n−k),−µk, . . . ,−µ1).

Here B = {b1 ≤ b2 ≤ . . .} ⊆ Z>0 is a semi-infinite set (that is, |B| = |Z>0\B| =∞) satisfying
bn+1 ∈ {bn, bn + 1}, A = {a1 ≤ a2 ≤ . . .} ⊆ Z>0 is an infinite set, and µ := (µ1 ≥ · · · ≥ µk)

is a partition. These locally simple sl(∞)-modules are denoted respectively by Λ
∞
2
B V , S∞A V ,

S∞A V∗, SµV and SµV∗.
Fix nonzero weight vectors:
(a) vµ ∈ SµV of weight µ :=

∑k
i=1 µiεi ∈ h∗sl,

(b) v∗µ ∈ SµV of weight µ∗ :=
∑k

i=1−µiεi ∈ h∗sl,
(c) eA ∈ Λ

∞
2
B V of weight εA :=

∑
i∈A εi ∈ h∗sl,

(d) vA ∈ S∞A V of weight λA :=
∑

i≥1(ai − ai−1)εi ∈ h∗sl,
(e) v∗A ∈ S∞A V of weight λ∗A :=

∑
i≥1(ai−1 − ai)εi ∈ h∗sl.

Now we are ready to state the main result of this section.
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Theorem 3.3. An integrable simple weight gl(∞)-module M is bounded if and only if
M is isomorphic to one of the following modules: Λ

∞
2
A V (eA, c), S∞A V (vA, c), S∞A V∗(v∗A, c),

SµV (vµ, c), or SµV∗(v∗µ, c), where c ∈ C is a scalar.

Proof. Set U(gl(n))0 := CU(gl(n))(hgl(n)), and fix a weight λ ∈ SuppM . Since M is simple
and bounded, Lemma A.1 from the Appendix claims that the weight space Mλ is simple as
a U(gl(n))0-module for n � 0. Let m ∈ Mλ and let Mn := U(gl(n))m. The simplicity of
Mλ as a U(gl(n))0-module and the fact that M is integrable imply the simplicity of Mn as
a gl(n)-module. Therefore, M ∼= lim−→n�0

Mn is locally simple. Hence, by Lemma 3.2 we have
an isomorphism of gl(∞)-modulesM ∼= M |sl(∞)(m, c) for some c ∈ C, and by Remark 3.1 we
know that M |sl(∞) is bounded as an sl(∞)-module. Now the statement follows from [GP20,
Theorem 5.1]. �

Proposition 3.4. The following statements hold.
(a) The modules S∞A V (vA, c), S∞A V∗(v∗A, c) are not highest weight modules with respect to

any Borel subalgebra of gl(∞).
(b) The module Λ

∞
2
A V (eA, c) is a b(≺)-highest weight module if and only if A ≺ (Z>0 \A).

In this case, we have Λ
∞
2
A V (eA, c) ∼= Lb(≺)(εA) where εA|hsl =

∑
i∈A εi and εA is

extended to hgl via (3.1).
(c) The module SµV (vµ, c) (respectively, SµV∗(v∗µ, c)) is a b(≺)-highest weight module if

and only if i1 ≺ · · · ≺ ik ≺ j for all j ∈ Z>0 \ {i1, . . . , ik} (respectively, i1 � · · · �
ik � j for all j ∈ Z>0 \ {i1, . . . , ik}). In this case, we have SµV (vµ, c) ∼= Lb(≺)(µ)
(respectively, SµV∗(v∗µ, c) ∼= Lb(≺)(µ

∗)) where µ|hsl =
∑

j>0 µjεij (respectively, µ∗|hsl =∑
i>0−µjεij) and µ (respectively, µ∗) is extended to h∗gl via (3.1).

Proof. Let b be an arbitrary splitting Borel subalgebra of gl(∞). The fact that a weight
module M is a b-highest weight gl(∞)-module if and only if M is a b-highest weight sl(∞)-
module, along with [GP20, Proposition 5.2], implies the statement. �

4. A general lemma

In this section g is one of the Lie superalgebras introduced in Section 2.

Lemma 4.1. Let k be equal to g0 or g0̄. If M is an integrable simple weight g-module
with finite-dimensional weight spaces, then there is an isomorphism of Z2-graded k′ := [k, k]-
modules

M |k′ ∼=
⊕
i

M(i),

where each M(i) is an integrable simple weight k′-module with finite-dimensional weight
spaces. Moreover, eachM(i) is also an integrable simple weight module with finite-dimensional
weight spaces over k.

Proof. Let µ be a weight of M , and consider the k-submodule N(µ) := U(k)Mµ of M |k′ .
Notice that the (k′ ∩ h)-weight spaces of N(µ) coincide with its h-weight spaces. Indeed, the
reason is basically the same as in Remark 3.1: since λ− λ′ is an element of the root lattice
of k′ for any two h-weights λ, λ′ of N(µ), we have λ 6= λ′ if and only if (λ−λ′)|h∩k′ 6= 0. Thus
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N(µ)ν|h∩k′ = N(µ)ν ⊆ Mν for any ν ∈ SuppN(µ), which implies that, as a k′-module, N(µ)
has finite-dimensional weight spaces.

As M |k′ is obviously integrable as a k′-module, so is N(µ). Then we can use [PS11,
Theorem 3.7] to conclude that each N(µ), and hence also M |k′ =

∑
µ∈SuppM N(µ) (by the

general result [Lan02, Chapter XVII, Lemma 2.1]), can be written as a direct sum
⊕

iM(i),
where each M(i) is an integrable simple weight k′-module with finite-dimensional weight
spaces. This proves the first statement. The second statement follows from the fact that the
(k′ ∩ h)-weight spaces of each M(i) are also h-weight spaces. �

5. Classification results

5.1. Type A. In this section

g = sl(∞|m) for m ∈ Z≥1 ∪ {∞}.
Recall from Theorem 3.3 that any integrable bounded simple weight gl(∞)-module is

isomorphic to M(m, c), for some integrable bounded simple weight sl(∞)-module M , some
fixed weight vector m ∈M , and some scalar c ∈ C. Moreover, by Remark 3.1, we know that
SuppM(m, c) is obtained by extending SuppM via (3.1). In particular, if λ = (λ1, λ2, . . .) ∈
C∞ is in SuppM then its extension through (3.1) to an element of h∗gl will be of the form
λd := λ+ ((d− λ1)(∞)) ∈ C∞, for some d ∈ c+ Z.

Consider now the isomorphism of Lie algebras gl(∞)⊕ sl(m)→ sl(∞|m)0 such that

(A,B) 7→

 A 0

0 B

 , E1,1 7→ hδ1−ε1 :=

 E−1,−1 0

0 E1,1

 ,

where A ∈ sl(∞) and B ∈ sl(m). This isomorphism induces the following correspondence of
weights:

h∗gl × h∗sl 3 (. . . , (λ3 − λ1) + c, (λ2 − λ1) + c, c)× (ν1, ν2, . . .)

↔ (. . . , (λ3 − λ1) + c, (λ2 − λ1) + c, c|0, ν2 − ν1, ν3 − ν1, . . .) := (λc|ν) ∈ h∗.

By Lemma 4.1, for an integrable bounded simple g-module M we have an isomorphism
of g0-modules

M |g0
∼=
⊕
i

M(i),

where each M(i) is an integrable bounded simple weight g0-module. For the rest of this
section we fix such a decomposition of M |g0 .

Recall that m ∈ Z≥1 ∪ {∞}. In order to consider both cases m < ∞ and m = ∞,
simultaneously, we define, for every n ∈ Z≥2, the elements

xn :=

{
m if m ∈ Z≥1

n− 1 if m =∞.

In particular, we have
sl(∞|m) ∼= lim−→(g(n) := sl(n|xn)).

Recall that (unless otherwise stated) by homomorphisms of Z2-graded vector spaces we
mean linear transformations that preserve parity.
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The modules S∞AV, S∞AV∗, Λ∞AV and Λ∞AV∗. By Vn we denote the natural g(n)-module,
and by V∗n its dual. For a, b ∈ Z>0 with b ≤ a, it is easy to check that there are unique
(up to scalar) embeddings of g(n − 1)-modules SbVn−1 ↪→ SaVn, ΛbVn−1 ↪→ ΛaVn, and
respectively, ΠSbVn−1 ↪→ ΠSaVn, ΠΛbVn−1 ↪→ ΠΛaVn. If b < a and xn−1 < xn, then
we also have unique (up to scalar) embeddings of g(n − 1)-modules SbVn−1 ↪→ ΠSaVn,
ΛbVn−1 ↪→ ΠΛaVn, and respectively, ΠSbVn−1 ↪→ SaVn, ΠΛbVn−1 ↪→ ΛaVn. Similar
statements hold for the g(n)-modules SaV∗n and ΛaV∗n. Notice that the inequality xn−1 < xn
holds whenever m =∞.

Let A = (a1 ≤ a2 ≤ · · · ) be a sequence of positive integers, and A be a sequence of
ordered pairs (an, bn), where bn ∈ {0, 1} and bn = bn+1 if an = an+1. Then we define the
g-modules

S∞AV := lim−→ΠbnSanVn, S∞AV∗ := lim−→ΠbnSanV∗n

Λ∞AV := lim−→ΠbnΛanVn, Λ∞AV∗ := lim−→ΠbnΛanV∗n,

where Π0 is the identity functor. For m = ∞ this definition makes sense for any sequence
A as above, but for m <∞ the g-modules Λ∞AV and Λ∞AV∗ are well defined only under the
additional assumption that an+1 ∈ {an, an + 1} and bn is constant for all n ≥ m+ 1.

The modules SµV and SµV∗. Let µ := (µ1 ≥ · · · ≥ µk) be a partition, and for every
n ≥ k consider the weight λ(n) := (µ1, . . . , µk, 0

(n−k)|0(xn)) ∈ h(n)∗. There are unique (up to
scalar) embeddings of g(n)0-modules Lb(<n)0(λ(n)) ↪→ Lb(<n+1)0(λ(n+ 1)) sending a b(<n)0-
highest weight vector to a b(<n+1)0-highest weight vector. Thus Proposition 6.3 below
implies that there are unique (up to scalar) embeddings of g(n)-modules Lb(<n)(λ(n)) ↪→
Lb(<n+1)(λ(n+1)) sending a b(<n)-highest weight vector to a b(<n+1)-highest weight vector.
Similar statements hold for the g(n)-modules Lb(>n)(λ(n))∗. Finally, we define the g-modules

SµV ∼= lim−→Lb(<n)(λ(n)), SµV∗ ∼= lim−→Lb(>n)(λ(n))∗.

For all n, let λ(n) ∈ h(n)∗ be a weight of the following form:

(Ω1) (an, 0
(n−1)|0(xn)),

(Ω2) (−an, 0(n−1)|0(xn)),
(Ω3) (0(n)|0(n−1), an),
(Ω4) (0(n)|0(xn−1),−an),
(Ω5) (µ1, . . . , µk, 0

(n−k)|0(xn)),
(Ω6) (−µ1, . . . ,−µk, 0(n−k)|0(xn)),

where A = (a1 ≤ a2 ≤ . . .) will be clear from the context, and µ := (µ1 ≥ · · · ≥ µk) is a
partition. Notice that
(Ω′1) S∞AV = lim−→ΠbnSanVn

∼= lim−→ΠbnLb(<n)(λ(n)),
(Ω′2) S∞AV∗ = lim−→ΠbnSanV∗n

∼= lim−→ΠbnLb(>n)(λ(n)),
(Ω′3) Λ∞AV = lim−→ΠbnΛbnVn

∼= lim−→ΠbnLb(>n)(λ(n)),
(Ω′4) Λ∞AV∗ = lim−→ΠbnΛbnV∗n

∼= lim−→ΠbnLb(<n)(λ(n)),
(Ω′5) SµV ∼= lim−→(SµVn := Lb(<n)(λ(n))), ΠSµV ∼= lim−→(ΠSµVn := ΠLb(<n)(λ(n))),
(Ω′6) SµV∗ ∼= lim−→(SµV∗n := Lb(>n)(λ(n))), ΠSµV∗ ∼= lim−→(ΠSµV∗n := ΠLb(>n)(λ(n))).
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Extensions. For n,m ∈ Z>0, we set

ρ(n|m) := (n, . . . , 2, 1| − 1,−2, . . . ,−m),

and, for any given weight λ = (a1, . . . , an|b1, . . . , bm) of sl(m|n), we define the left side
(respectively, right side) of λ to be (a1, . . . , an) (respectively, (b1, . . . , bm)).

Let F be the set of all functions from Z to the set of symbols {<,>,×, ◦} such that
f(z) = ◦ for all but finitely many z ∈ Z. Define

#f := |f−1(×)|, coreL(f) := f−1(>), coreR(f) := f−1(<),

and let the core of f be
core(f) := (coreL(f), coreR(f)).

If f ∈ F , we define the weight diagram Dwt(f) to be the graph of the function f , i.e. a
number line with the symbol f(z) drawn at each z ∈ Z. Also, if #f = k, then we set
×(f) := (a1, . . . , ak), where f−1(×) = {a1, . . . , ak}, and a1 > · · · > ak. If a, b ∈ Z satisfy
f(a) = ×, f(b) = ◦ and b < a, we define fab ∈ F to be the map with same core as f , and
such that

×(fab ) = (a1, . . . , aj−1, b, aj+1, . . . , ak),

where a = aj and aj−1 < b < aj+1. Let lf (b, a) denote the number of occurrences of the
symbol × minus the number of occurrences of the symbol ◦ strictly between b and a in
Dwt(f). We say that g is obtained from f by a legal move of weight zero if g = fab for some
a, b ∈ Z with lf (b, a) = 0.

Let P ⊆ Zn × Zm (respectively, P+ ⊆ Zn × Zm) denote the set of integral (respectively,
dominant integral) weights of gl(m|n). Any (λ1, . . . , λm|λ′1, . . . , λ′n) ∈ P can be identified
with the following ρ(m|n)-shifted element

(a1 := λ1 + n, . . . , an := λn + 1|b1 := 1− λ′1, . . . , bm := m− λ′m).

Via this identification, P+ corresponds to the set of elements λ = (a1, . . . , an|b1, . . . , bm) ∈ P
such that

a1 > · · · > an, b1 < · · · < bm.

For any f ∈ F , write
coreL(f) ∪ ×(f) = (a1 > · · · > an) and coreR(f) ∪ ×(f) = (b1 < · · · < bm),

and set
λf := (a1, . . . , an|b1, . . . , bm) ∈ P+.

The map F 3 f 7→ λf ∈ P+ is a bijection between F and P+, and its inverse is P+ 3 λ 7→
fλ ∈ F .

Given f, g ∈ F , we write
f → g, g → f

if g is obtained from f by a legal move of weight zero, or f is obtained from g by a legal move
of weight zero, respectively. Let Lgl(n|m)(ν) denote a simple highest weight gl(n|m)-module
of highest weight ν with respect to the Borel subalgebra of gl(n|m) given by upper triangular
matrices. Let h(m|n) be the diagonal subalgebra of gl(m|n). Then it follows from [MS11,
Theorem B] that Ext1

gl(n|m),h(m|n)(Lgl(n|m)(λf ),Lgl(n|m)(λg)) 6= 0 if and only if f → g or g → f ,
where the subscripts on Ext1 indicate that we consider extensions in the category of weight
modules.
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Remark 5.1. If n 6= m then we have a direct sum of ideals gl(n|m) = Cz ⊕ sl(n|m), where
the identity matrix z = In+m is central in gl(n|m). Let M be a simple object in the category
of weight modules over gl(n|m). Since z lies in the center of gl(n|m), we have an isomorphism
of gl(n|m)-modulesM ∼= Cc�S, where S = M |sl(n|m) is a simple weight sl(n|m)-module and
Cc is one-dimensional with z acting on Cc via multiplication by c. Let Cc � S and Cd � T
be two simple weight gl(n|m)-modules. Then

Ext1
Cz⊕sl(n|m)(Cc � S,Cd � T ) ∼= Ext1

Cz(Cc,Cd)⊗ Homsl(n|m)(S, T )

⊕ HomCz(Cc,Cd)⊗ Ext1
sl(n|m)(S, T ),

where in this remark we skip the Cartan subalgebras in the subscripts. Thus, if we assume
that S � T and c = d, we obtain

Ext1
Cz⊕sl(n|m)(Cc � S,Cc � T ) ∼= Ext1

sl(n|m)(S, T ).

Let Lb(<n)(λ|λ′) be a simple highest weight sl(n|m)-module and consider c(λ) :=
∑
λi +∑

λ′i. In what follows we denote the gl(n|m)-module Cc(λ)�Lb(<n)(λ|λ′) by Lgl(λ|λ′). Notice
that for any other weight (ν|ν ′) there exists d(λ) ∈ C such that Cc(λ) � Lb(<n)(ν|ν ′) ∼=
Lgl(ν + d(λ)(n)|ν ′ − d(λ)(m)). Then

Ext1
sl(n|m)(Lb(<n)(λ|λ′),Lb(<n)(ν|ν ′)) ∼= Ext1

gl(n|m)(Lgl(λ|λ′),Lgl(ν + d(λ)(n)|ν ′ − d(λ)(m)))

�

For the next result we need to write the g(n)-modules appearing in (Ω′1)-(Ω′6) as b(<n)-
highest weight modules. The following isomorphisms of g(n)-modules can be obtained via
odd reflections (see [Ser11, Lemma 10.2], or [PS94, Lemma 3]):

(a) SanV∗n = Lb(>n)(−an, 0(n−1)|0(xn)) ∼= Lb(<n)(λ(n)),
(b) ΛanVn = Lb(>n)(0

(n)|0(xn−1), an) ∼= Lb(<n)(λ(n)),
(c) SµV∗n = Lb(>n)(−µ1, . . . ,−µk, 0(n−k)|0(xn)) ∼= Lb(<n)(λ(n)),

where for n > k, the respective λ(n) is as follows:

(Ω̃2) (0(n)|0(xn−an),−1(an)) if an ≤ xn, or (0(n−1),−an + xn|(−1)(xn)) otherwise,
(Ω̃3) (1(an), 0(n−an)|0(xn)) if an ≤ n, or (1(n)|an − n, 0(xn−1)) otherwise,
(Ω̃6) (0(n−l),−µl + xn, . . . ,−µ1 + xn| − l(xn−µl+1), . . . ,−k(µk)) if µl ≥ xn and µl+1 < xn for

some l, or (0(n)|0(xn−µ1),−i(µ1−µi+1), . . . ,−k(µk)) otherwise (in the latter case i is such
that µ1 = · · · = µi and µi > µi+1). In fact, both types of weights can be described
by partitions: in the former case, to any pair of partitions ν = (ν ′1 ≥ · · · ≥ ν ′xn) and
ν = (ν1 ≥ · · · ≥ νp) we associate the weight (0(n−p),−νp, . . . ,−ν1| − ν ′xn , . . . ,−ν

′
1); in

the latter case, to any partition ν = (ν1 ≥ · · · ≥ νp) with p ≤ xn we associate the
weight (0(n)|0(xn−p),−νp, . . . ,−ν1).

In the proof of the next result we use the symbol “?” for a mark of a weight whose explicit
form does not matter.

Lemma 5.2. Assume that xn > 1 in g(n) = sl(n|xn), and let P,Q be simple g(n)-modules
occurring in (Ω′1)-(Ω′6). Assume in addition that, if P or Q has type (Ω′5) or (Ω′6) then the
length of the respective partition µ is much smaller than n. Then Ext1

g(n),h(n)(P,Q) = 0.
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Proof. Let λ be the b(<n)-highest weight of a module appearing in (Ω′1)-(Ω′6), and set f := fλ.
We claim that if a < b satisfy f(a) = ×, f(b) = ◦ and c ∈ C, then for n � 0 the weight
λfab +(c(n)|−c(xn)) does not occur as a b(<n)-highest weight of a module in (Ω′1)-(Ω′6). Below
we prove this claim for λ of the form (an, 0

(n−1)|0(xn)) or (0(n)|0(xn−1),−an) for an ∈ Z>0,
or (µ1, . . . , µk, 0

(n−k)|0(xn)) for a partition µ = (µ1 ≥ · · · ≥ µk). The other cases follow by
dualization.

Performing an arbitrary legal move of weight zero on f yields a weight whose ρ(n|xn)-
shifted form is given by

λfab = (?, . . . , ?, b′, b|b, c, ?, . . . , ?),

where |b′− b| > 1 and |c− b| > 1. Since we are assuming xn ≥ 2, we conclude that λfab is not
equal the ρ(n|xn)-shifted form of the following weights: (bn, 0

(n−1)|0(xn)), (0(n)|0(xn−1),−bn),
(0(n)|0(xn−bn),−1(bn)), (0(n−1),−bn + xn|(−1)(xn)), (1(bn), 0(n−bn)|0(xn)) or (1(n)|bn − n, 0(xn−1))
for bn ∈ Z>0, (ν1, . . . , νl, 0

(n−l)|0(xn)), (0(n)|0(xn−ν1),−i(ν1−νi+1), . . . ,−l(νl)) for a partition ν =
(ν1 ≥ · · · ≥ νl).

To prove that the weight λfab is not equal the ρ(n|xn)-shifted form of a weight (0(n−l),−νl+
xn, . . . ,−ν1 + xn| − l(xn−νl+1), . . . ,−k(νl)) for a partition ν = (ν1 ≥ · · · ≥ νl), we notice that
if λ equals (an, 0

(n−1)|0(xn)) (respectively, (µ1, . . . , µk, 0
(n−k)|0(xn))), the difference of the n-th

and (n− 1)-th (respectively, the k-th and (k + 1)-th) marks in the left side of λfab is bigger
than zero (here we are assuming that n� 0 so that n− l > k). For λ = (0(n)|0(xn−1),−an)
we take min{n, an} � 0 so that xn+an � l, and: the difference of the xn-th and (xn−1)-th
marks in the right side of λfba is bigger than k (if a = xn + an), or the difference of the
(xn + an − 2)-th and (xn + an − 1)-th marks in the left side of λfab is bigger than 1 (if
a < xn + an). This proves the claim.

Let ν be the b(<n)-highest weight of a module occurring in (Ω′1)-(Ω′6). We have shown
in all cases that there exists a pair of marks of λfab whose difference does not coincide with
the difference of the respective pair of marks of the ρ(n|xn)-shifted form of ν. Since for any
c ∈ C the difference of any pair of marks of λfab + (c(n)| − c(xn)) coincides with the difference
of the respective pair of marks of λfab , we conclude (1): for any c ∈ C the non-shifted form
of λfab + (c(n)| − c(xn)) cannot occur as a b(<n)-highest weight of a module in (Ω′1)-(Ω′6).

Assume now µ is one of the b(<n)-highest weights appearing in (Ω̃2), (Ω̃3), (Ω̃6) and set
g = fµ. Similarly to (1) we show (2): if gab is obtained from g by a legal move of weight
zero, then for any c ∈ C the non-shifted form of λgab + (c(n)| − c(xn)) does not occur as a
b(<n)-highest weight of a module in (Ω′1)-(Ω′6). Now we can combine (1) and (2) above with
[MS11] to obtain Ext1

gl(n|xn)⊕Cz(Lgl(ν),Lgl(λ + (c(n)| − c(xn))) = 0 for every c ∈ C and any
weight ν occurring as a b(<n)-highest weight of a module in (Ω′1)-(Ω′6). Finally, Remark 5.1
gives

Ext1
sl(n|xn),h(n)(Lb(<n)(ν),Lb(<n)(λ)) ∼= Ext1

gl(n|xn),h(n)⊕Cz(Lgl(ν),Lgl(λ+(c(ν)(n)|−c(ν)(xn))) = 0,

and the statement follows. �

5.2. Main results. Recall the sl(∞)-modules Λ
∞
2
A V , S∞A V , S∞A V∗, SµV and SµV∗ defined in

Section 3. The support of each of these modules equals the projection to h∗sl of a respective
subset of C∞:
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(i) ΛA := {εB =
∑

i∈B εi | B ≈ A}, where B ≈ A means that there exist disjoint finite
subsets FA ⊆ A and FB ⊆ B, such that |FA| = |FB| and A \ FA = B \ FB,

(ii) SA := {λ | λi ≥ 0,∃n :
∑n

i=1 λi = an, λi = (ai − ai−1) for i > n}, where ai ∈ A,
(iii) S∗A := {λ | λi ≤ 0,∃n :

∑n
i=1 λi = −an, λi = (ai−1 − ai) for i > n}, where ai ∈ A,

(iv) Sµ := {λ | 0 ≤ λi ≤ µi},
(v) S∗µ := {λ | 0 ≤ −λi ≤ µi}.
Let m ∈ Z≥1 ∪ {∞}. In this section M is assumed to be a simple integrable bounded

sl(∞|m)-module. We use the symbol “�” for a weight whose explicit form does not matter.

Lemma 5.3. Any weight of M can be obtained as the projection of a vector (ν|�), where ν
lies in one of the subsets displayed in (i)-(v).

Proof. Any weight of M is a weight of some M(i), and hence, as discussed in the beginning
of Section 5.1, it can be obtained as the projection of some vector (νc|�) ∈ C∞ ×Cm, where
c ∈ C and ν lies in one of the subsets displayed in (i)-(v). Since the projection of (νc|�) to
h∗ coincides with the projection of (νc − c(∞) + ν

(∞)
1 | � +c(m) − ν(m)

1 ) = (ν| � +c(m) − ν(m)
1 ),

the statement follows. �

Let v ∈M(i) ⊆M be a nonzero weight vector with M(i)|g′0 isomorphic to S�T , where S
(respectively, T ) is an integrable bounded simple weight sl(∞)-module (respectively, sl(m)-
module). If S is isomorphic to Λ

∞
2
A V , S∞A V , S∞A V∗, SµV , or SµV∗, then we say that v has

type (i), (ii), (iii), (iv), or (v), respectively.

Lemma 5.4. Let v ∈M (ν|�) be a nonzero weight vector with type (∗) ∈ {(i)−(v)}. If w ∈M
is a nonzero weight vector, then w also has type (∗).

Proof. SinceM is simple, it is enough to prove that the action of g1̄ on v does not change the
type of v. Assume that v ∈M(i) ∼= S�T , where S (respectively, T ) is an integrable bounded
simple weight sl(∞)-module (respectively, sl(m)-module). Let w := Xαv, where Xα ∈ gα ⊆
g1̄. Take n � 0 so that the root vectors X±(δi−δj) commute with Xα for all i, j ≥ n. Let s
denote the Lie subalgebra of g0 generated by all such root vectors. Notice that s ∼= sl(∞),
and U(s)w = XαU(s)v. Thus we have an isomorphism of s-modules U(s)w ∼= U(s)v, and
using the fact that S is isomorphic to one of the modules listed in the beginning of this
section, we easily check that the type of U(s)w coincides with the type of S. Precisely, if S
is isomorphic to S∞A V or S∞A V∗ for an infinite set A ⊆ Z>0, to Λ

∞
2
A V for a semi-infinite set

A ⊆ Z>0, or to SµV , SµV∗ for a partition µ = (µ1 ≥ · · · ≥ µk), then U(s)w is isomorphic
respectively to S∞B V , S∞B V∗, Λ

∞
2
B V , SηV or SηV∗, where B = {b1 ≤ b2 ≤ · · · } ⊆ Z≥n satisfies

bi = an+i for all i ≥ n, and η = (η1 ≥ · · · ≥ ηl) is the partition determined by the weight
µ|h∩s ∈ (h∩s)∗. Therefore, the assumption that v and w have different types would contradict
to the fact that both s ∼= sl(∞)-modules U(s)v and U(s)w have the type of S. �

If v, w ∈ M are nonzero weight vectors then Lemma 5.4 allows us to claim that v and w
have the same type according to (i)-(v). Moreover, it follows from Lemma 5.3 that if v has
type (∗) ∈ {(i)− (v)} then its weight can be represented by the vector (ν, �), with ν lying
in a set of type (∗). In what follows we often use this fact.
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Lemma 5.5. Let v ∈M (�|�) be a nonzero weight vector, and consider the finite-dimensional
g(n)-module Mn := U(g(n))v. Let P be a simple subquotient of Mn and let (λ|γ) ∈ SuppP .
Then the following statements hold for n� 0:

(a) If v is of type (iv), then any b(<n)-singular weight (λ|γ) of P is of the form
(µ1, . . . , µk, 0

(n−k)|0(xn)) for a partition µ = (µ1 ≥ · · · ≥ µk), or (0(∞)|0(xn)), or
(1(n)|a, 0(xn−1)) where a ∈ Z≥0 if xn > 1 and a ∈ C if xn = 1.

(b) If v is of type (v), then any b(>n)-singular weight (λ|γ) of P is of the form
(−µ1, . . . ,−µk, 0(n−k)|0(xn)) for a partition µ = (µ1 ≥ · · · ≥ µk), or (0(∞)|0(xn)),
or (−1(n)| − a, 0(xn−1)) where a ∈ Z≥0 if xn > 1 and a ∈ C if xn = 1.

(c) If v is of type (ii), then any b(<n)-singular weight (λ|γ) of P is of the form
(a, 0(n−1)|0(xn)) for some a ∈ Z>0, or (0(∞)|0(xn)).

(d) If v is of type (iii), then any b(>n)-singular weight (λ|γ) of P is of the form
(−a, 0(n−1)|0(xn)) for some a ∈ Z>0, or (0(∞)|0(xn)).

(e) If v is of type (i), then any b(<n)-singular weight (λ|γ) of P is of the form
(1(a), 0(n−a)|0(xn)), or (1(n)|a, 0(xn−1)) for some a ∈ Z≥0, or (0(∞)|0(xn)).

Moreover, in all above cases (λ|γ) = (0(∞)|0(xn)) implies g(n)P = 0.

Proof. Write (λ|γ) = (λn, . . . , λ1|γ1, . . . , γxn) and let w ∈ P be a nonzero vector of weight
(λ|γ). Since Mn is a finite-dimensional (and hence a semisimple) weight module of g(n)0 we
may assume that P is a g(n)0-submodule of Mn, and therefore that w is a b(<n)0-singular
vector of Mn.

(a). Since (λ|γ) is a b(<n)0-singular weight and w has the same type of v by Lemma 5.4, we
must have λ = (µ1, . . . , µk, 0

(n−k)) for some partition µ = (µ1 ≥ · · · ≥ µk) where k = 1, . . . , n.
Assuming k < n, we will show that γ = 0. For any 1 ≤ ` ≤ xn we have Xε`−δ1w = 0 as
otherwise Xε`−δ1w would be a vector of weight (µ1, . . . , µk, 0

(n−k−1),−1|�) in contradiction
to Lemma 5.4. Indeed, a weight vector with such a weight cannot have the type of v. Thus
Xε`−δ1w = 0. Since w is a b(<n)-singular weight vector, we conclude that hε`−δ1w = γ`w = 0,
which shows γ` = 0. Since ` was arbitrary, this proves that γ = 0.

If k = n for all n � 0, then we must have λi = 1 for all i = 1, . . . , n as otherwise, by
[GP20, Theorem 5.1], M would not be a bounded g0-module. Thus (λ|γ) = (1(n)|γ), and the
statement is proved for xn = 1. Assume now that xn > 1. We claim that γ = (a, 0(xn−1)) or
γ = (−1(xn−1),−a) for some a ∈ Z≥0. Indeed, if γ1 /∈ Z or γ1 ∈ Z≤−2 then, as in the previous
case, we get a contradiction due to Lemma 5.4, since Xε2−δ1Xε1−δ1w would be a nonzero
vector of weight (1(n−1),−1|�). If γ1 ∈ Z≥0 then γi = 0 for all i ≥ 2 by the same reason.
Finally, if γ1 = −1 we can use again Lemma 5.4 to show that γi = −1 for all 2 ≤ i ≤ xn − 1
and that γxn = −a for some a ∈ Z≥0. The claim is proved.

Notice that there are isomorphisms of g(n)-modules

Lb(<n)(1
(n)|a, 0(xn−1)) ∼= Λn+aVn,

Lb(<n)(1
(n)| − 1(xn−1),−a) = Lb(<n)(0

(n)|0(xn−1),−a+ 1) ∼= Λa−1V∗n,

and, by Lemma 5.4, the latter module cannot occur as a g(n)-subfactor of M since vectors
of Λa−1V∗n cannot have the type of v.

To prove that (λ|γ) = (0(∞)|0(xn)) implies g(n)P = 0 in case (a), notice that (g(n)0 ⊕
g(n)1)w = 0 since w is a b(<n)-singular vector of weight (0(∞)|0(xn)). Furthermore, g(n)−1w 6=
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0 contradicts Lemma 5.4. Therefore g(n)w = 0 for any b(<n)-singular vector of P , and con-
sequently g(n)P = 0.

The remaining claims are proven in a similar way. �

Remark 5.6. For g = sl(n|1), we have a weaker version of Lemma 5.2: if P , Q are finite-
dimensional simple g(n)-modules whose respective b(<n)-highest weights λ, µ are as in
Lemma 5.5 (a) (respectively, (b)-(e)), then Ext1

g(n),h(n)(P,Q) = 0. To prove this, we proceed
as in Lemma 5.2: we show that fλ cannot be obtained from fµ by a legal move of weight
zero and vice-versa, and then we apply [MS11]. �

Corollary 5.7. Let v ∈ M be a nonzero weight vector, and consider the finite-dimensional
g(n)-moduleMn = U(g(n))v. If P,Q are simple subquotients ofMn, then Ext1

g(n),h(n)(P,Q) =
0. In particular, Mn is a semisimple g(n)-module.

Proof. The highest weights allowed for P and Q are the ones occurring in Lemma 5.5 (a)
(respectively, (b)-(e)). The statement now follows from Lemma 5.2 for m > 1, and from
Remark 5.6 for m = 1. �

Lemma 5.8. If v ∈M (λ|γ) is a nonzero vector, thenMn = U(g(n))v is a simple g(n)-module
for all n� 0.

Proof. By Lemma A.1 from the Appendix, there exists N � 0 such that M (λ|γ) is a simple
U0
N -module. A standard argument shows that Mn is a simple g(n)-module for all n ≥ N .

Indeed, by Corollary 5.7, any submodule K ⊆ Mn yields a split exact sequence of g(n)-
modules

0→ K →Mn → W → 0.

This sequence provides an exact sequence of U0
n-modules

0→ K(λ|γ) →M (λ|γ)
n → W (λ|γ) → 0.

Since M (λ|γ)
n is a simple U0

n-module, we have K(λ|γ) = 0 or K(λ|γ) = M
(λ|γ)
n . If K(λ|γ) = 0

then v ∈ W and Mn = U(g(n))v = W , which implies K = 0. Similarly, if K(λ|γ) = M
(λ|γ)
n

we conclude that Mn = K. �

Theorem 5.9. Let g = sl(∞|m) for m ∈ Z≥1 ∪ {∞} and let M be an integrable bounded
simple weight g-module. Then the following statements hold:

(a) M is locally simple.
(b) M is isomorphic to one of the following modules: SµV, SµV∗, ΠSµV, ΠSµV∗, S∞AV,

S∞AV∗, Λ∞AV, or Λ∞AV∗. If m = 1, then M can also be isomorphic to Lb(>)(0
(∞)|a)

or Lb(<)(0
(∞)|a) for a ∈ C \ Z.

(c) All isomorphisms between simple modules appearing in (b) are: S∞AV ∼= S∞A′V,
S∞AV∗ ∼= S∞A′V∗, Λ∞AV

∼= Λ∞A′V and Λ∞AV∗
∼= Λ∞A′V∗ if and only if there ex-

ists N > 0 such that (ai, bi) = (a′i, b
′
i) for all i ≥ N ; S∅V ∼= S∅V∗ ∼= C and

ΠS∅V ∼= ΠS∅V∗ ∼= ΠC (∅ stands for the empty partition).

Proof. Let v ∈ M (λ|γ) \ {0}. By Lemma 5.8 the g(n)-module Mn = U(g(n))v is simple for
all n � 0. In particular, M =

⋃
nMn and M is locally simple. This proves part (a). Part

(b) follows from Lemma 5.5. . Finally, one direction of (c) is clear, the other follows from
the observation that if a locally simple module M is isomorphic to lim−→Mn and to lim−→M ′

n,
then Mn

∼= M ′
n for n� 0. �



INTEGRABLE BOUNDED WEIGHT MODULES OF LIE SUPERALGEBRAS AT INFINITY 17

Suppose that g = sl(∞|m) with m <∞, and that M is isomorphic to S∞AV. Notice that,
for all n ≥ m + 1, if Mn

∼= SanVn (respectively, Mn
∼= ΠSanVn) then Mn+1

∼= San+1Vn+1

(respectively, Mn+1
∼= ΠSan+1Vn+1). For the case where M is isomorphic to S∞AV∗, Λ∞AV or

Λ∞AV∗ the situation is analogous. Thus Theorem 5.9 can be refined as follows:

Corollary 5.10. If M is an integrable bounded simple weight sl(∞|m)-module (m < ∞),
then M is isomorphic to one of the following modules: SµV, SµV∗, ΠSµV, ΠSµV∗, S∞AV,
S∞AV∗, Λ∞AV, or Λ∞AV∗ (and additionally Lb(<)(0

(∞)|a) for a ∈ C if m = 1), where the
sequence (bn) is constant.

Proposition 5.11. The following statements hold:
(a) The modules SµV and ΠSµV (respectively, SµV∗ and ΠSµV∗) are b(≺)-highest

weight modules if and only if there are i1, . . . , ik ∈ Z<0 such that i1 ≺ · · · ≺ ik ≺
Z<0 \ {i1, . . . , ik} (respectively, Z<0 \ {i1, . . . , ik} ≺ ik ≺ · · · ≺ i1).

(b) If either |{n ∈ Z>0 | an+1 − an > 1}| = ∞ or |{bn = p}| = ∞ for all p ∈ {Id,Π},
then the g-modules Λ∞AV and Λ∞AV∗ are not highest weight modules with respect to
any Borel subalgebra of g. If |{n ∈ Z>0 | an+1 − an > 1}| < ∞ and |{bn = p}| < ∞
for some p ∈ {Id,Π}, then the g-module Λ∞AV (respectively, Λ∞AV∗) is a b(≺)-highest
weight module if and only if A ≺ (Z>0 \ A) (respectively, (Z>0 \ A) ≺ A).

(c) The modules S∞AV, S∞AV∗ are not highest weight modules with respect to any Borel
subalgebra of g.

Proof. For an arbitrary splitting Borel subalgebra b ⊆ g, every b-highest weight vector v ∈M
is a b0-singular weight vector. Now the result follows from Proposition 3.4. �

5.3. The case of q(∞). Let λ ∈ C∞. Recall that #λ denotes the number of nonzero marks
of λ, and [a] denotes the greatest integer in the number a ∈ Q.

Theorem 5.12. An integrable simple weight q(∞)-module M is bounded if and only if
M ∼= SγV := Lb(<)(

∑k
i=1 γiεi) or M ∼= SγV∗ := Lb(>)(

∑k
i=1−γiεi), for some partition

γγγ = (γ1 > γ2 > · · · > γk). Moreover, SγV ∼= ΠSγV and SγV∗ ∼= ΠSγV∗ if and only if k is
odd.

Proof. Notice that SγV (respectively, SγV∗) is bounded as it is a submodule of the bounded
module

⊗k
i=1 S

γiV (respectively,
⊗k

i=1 S
γiV∗). This proves one direction of the statement.

For the other direction, note that the dimension formula for the weight spaces of M from
Section 2.3 shows that the number of nonzero marks of the weights of M is bounded by
some l > 0. This implies that for any i, M(i) ∼= SµiV or M(i) ∼= SµiV∗ for appropriate µi.
Fix i0 and assume that M(i0) ∼= Sµ0V . Let vµ0 be a b(<)0-highest weight vector of M(i0).
Pick a b(<l)-singular vector w0 in U(b(<l))vµ0 = U(b(<l)1)vµ0 . Then b(<l)w0 = 0, and
gεi−εjw0 = 0 for all i > 0 and j > l, which implies that w0 is a b(<)-highest weight vector of
M . Since M is simple, this shows the existence of isomorphism M ∼= Lb(<)(

∑
γiεi) for some

partition γ1 > γ2 > · · · > γk given by the weight of w0. The strict inequality γi > γi+1 follows
from the fact that γi = γi+1 implies that the simple q(2)-module Lb(<2)(γi, γi+1) generated by
w0 is infinite dimensional [Pen86], and hence non-integrable. The case where M(i) ∼= Sµ0V∗
is considered in a similar way.

The statement that SγV ∼= ΠSγV and SγV∗ ∼= ΠSγV∗ if and only if k is odd follows
from [Pen86, Proposition 4]. �
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5.4. The remaining cases. Let g equal ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospC(2|∞),
ospD(∞|∞), ospD(∞|2k), ospD(m|∞), or sp(∞). In this section, τ denotes the map from
the set of indices that label the standard basis of the Cartan subalgebra of g to the one-
element set {1}.

Up to isomorphism, there are just two non-isomorphic spinor o(2n)-modules, S+
n and

S−n , and there is a unique spinor o(2n + 1)-module Sn. More precisely, consider S+
n =

Lb(<n,τ)(1/2, . . . , 1/2), S−n = Lb(<n,τ)(1/2, . . . , 1/2,−1/2), and Sn = Lb(<n,τ)(1/2, . . . , 1/2).
Up to scalar, there are only two embeddings ι±n : Sn−1 ↪→ Sn and unique embeddings
S+
n−1 ↪→ S+

n , S+
n−1 ↪→ S−n , S−n−1 ↪→ S+

n , and S−n−1 ↪→ S−n . For a given subset A ⊆ Z>0

we define the oB(∞)-module SBA to be the direct limit of o(2n + 1)-modules obtained from
the sequence of embeddings {ϕn : Sn−1 ↪→ Sn} such that ϕn = ι+n if n ∈ A and ϕn = ι−n
otherwise. In a similar way we define the oD(∞)-module SDA to be the direct limit of o(2n)-
modules obtained from the sequence of embeddings {ϕn : Mn−1 ↪→Mn} such that Mi = S+

i

if i ∈ A and Mi = S−i otherwise. It follows from [GP20, Proposition 5.3 and Theorem 5.5]
that any integrable bounded simple weight o(∞)-module is isomorphic to SBA , SDA , or to the
natural o(∞)-module Vo.

Let ωA ∈ C∞ be defined by setting (ωA)k = 1
2
if k ∈ A and (ωA)k = −1

2
otherwise. For

A,A′ ⊆ Z>0 we write A′ ∼B A if A and A′ differ by finitely many elements, and we write
A′ ∼D A if A and A′ differ by an even number of elements. By [GP20, § 5.2], we have
SuppSBA = {ωA′ ∈ CZ>0 | A′ ∼B A} and SuppSDA = {ωA′ ∈ CZ>0 | A′ ∼D A}.

Finally, it also follows from [GP20, Proposition 5.7] that any nontrivial integrable bounded
simple weight sp(∞)-module is isomorphic to the natural sp(∞)-module Vsp.

In Theorem 5.14 below we will make use of the following remarks several times.

Remark 5.13. (a) Assume g equals ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospC(2|∞),
ospD(∞|∞), ospD(∞|2k), ospD(m|∞), or sp(∞). Notice that in all cases g0̄

∼= s1⊕s2,
where s1 is isomorphic to o(∞) or s2 is isomorphic to sp(∞). In particular, for
any constituent M(i) of M , we have an isomorphism of (non-graded) g0̄-modules
M(i) ∼= S(i) � T (i), where S(i) is isomorphic to an s1-module of the form SBA , SDA ,
Vo or C if s1

∼= o(∞), and T (i) is isomorphic to an s2-module of the form Vsp or C if
s2
∼= sp(∞). Since M is a simple g-module, any two weights of M must differ from

each other only by finitely many marks. This shows that once S(i) is isomorphic to Vo
or C, then we are not allowed to have any S(j) isomorphic to SBA or SDA . Similarly, if
S(i) is isomorphic to SBA or SDA , then we are not allowed to have any S(j) isomorphic
to Vo or C. Also observe that if S(i) ∼= C (respectively, T (i) ∼= C) for all i, then
g1̄M = 0. Since h ⊆ [g1̄, g1̄], we obtain hM = 0, which implies M ∼= C.

(b) (Support arguments) Let L be a weight g-module, α ∈ ∆ be a root of g, and v ∈ Lλ
be a nonzero weight vector. In what follows, by writing that support arguments imply
that Xαv = 0, we mean that the vector α + λ ∈ h∗ cannot lie in SuppL.

(c) Let M be a b-highest weight g-module with nonzero b-highest weight vector v. We
define

|M | :=

{
M if |v| = 0̄

ΠM if |v| = 1̄.

�

We are now ready to state the main result of this section.
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Theorem 5.14. Let g equal ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospD(∞|∞), ospD(∞|2k),
ospD(m|∞), ospC(2|∞) or sp(∞). A nontrivial integrable simple weight g-module M is
bounded if and only if M ∼= V or M ∼= ΠV. In particular, M is locally simple.

Proof. Throughout this proof ≺ denotes the linear order

−1 ≺ 1 ≺ −2 ≺ 2 ≺ · · ·
on Z×, and A will be a subset of Z>0. The general idea is to base the proof on Lemma 4.1,
and we consider several cases in order to deal more effectively with the technical details.
SinceM is nontrivial, Remark 5.13 implies that in each case below we can assume that there
is at least one S(i) or T (i) that is not isomorphic to the trivial module C.

Case g = ospB(∞|∞), ospD(∞|∞). Recall that g0̄
∼= o(∞)⊕sp(∞), where o(∞) = oB(∞)

or o(∞) = oD(∞), respectively. Assume first that, for some i, there is an isomorphism of
(non-graded) g0̄-modules M(i) ∼= Vo � N for a simple bounded integrable weight sp(∞)-
module N . By [GP20, Proposition 5.7] we have either N ∼= Vsp or N ∼= C. Suppose N ∼= Vsp.
Then M(i) ∼= Lb(≺,τ)0(δ1 + ε1). Moreover, support arguments imply that a b(≺, τ)0-highest
weight vector v is also a b(≺, τ)-highest weight vector (see Remark 5.13). In particular,
Xδ2+ε1v = 0. But support arguments show also that X−δ2−ε1v = 0, and hence we get a
contradiction:

0 = hδ2+ε1v = −v.
Thus N ∼= C, and consequently

|M | ∼= Lb(≺,τ)(δ1) ∼= V.

Assume now there is an isomorphism of g0̄-modules M(i) ∼= SBA �N . We claim that this
is not possible. Indeed, we know that N ∼= C or N ∼= Vsp. Suppose N ∼= Vsp, and define
σ : Z× → {±1} by setting σ(j) = 1 for j ∈ Z>0, σ(j) = 1 for j ∈ −A, and σ(j) = −1
otherwise. In particular, we have M(i) ∼= Lb(≺,σ)0(ωA + ε1), and a b(≺, σ)0-highest weight
vector v of M(i) is also a b(≺, σ)-highest weight vector of M . Then X−δj−ε1v = 0 for any
j /∈ −A. On the other hand, support arguments (see Remark 5.13) show that Xδj+ε1v = 0,
and hence we get a contradiction:

0 = h−δj−ε1v = −v.
Case g = ospB(m|∞), ospD(m|∞). We have g0̄

∼= o(m) ⊕ sp(∞). Assume there is an
isomorphism of g0̄-modules M(i) ∼= Lb(<m,τ)(λ)� Vsp for some weight λ ∈ h(m)∗. We claim
that λ = 0. Indeed, our assumption implies that M(i) is a b(≺, τ)0-highest weight module.
Moreover, if v ∈ M(i) is a b(≺, τ)0-highest weight vector, then support arguments (see
Remark 5.13) show that Xδj+ε2v = 0 and X−δj−ε2v = 0 for all j. Thus

0 = hδj+ε2v = λjv,

which implies λj = 0, and hence λ = 0.
Next we claim that w := Xδ1−ε1v 6= 0. Indeed, support arguments imply that Xεj−δj+1

v =
0 for 1 ≤ j ≤ m− 1, Xδj−εjv = 0 for 2 ≤ j ≤ m, and Xεj−εj+1

v = 0 for j ≥ m. Thus w = 0
yields

|M | ∼= Lb(≺,τ)(ε1) ∼= Lb(<,τ)(ε1) ∼= lim−→Lb(<n,τ)(ε1).

But, by [Kac78, Proposition 2.3], the modules Lb(<n,τ)(ε1) are not finite dimensional, and
since they are simple, this is a contradiction. Thus w 6= 0.
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Now we notice that Xδ1−ε1w = 0, and again using support arguments we conclude that
Xεj−δj+1

w = 0 for 1 ≤ j ≤ m − 1, Xδj−εjw = 0 for 2 ≤ j ≤ m, and Xεj−εj+1
w = 0 for

j ≥ m. In particular, n(≺, τ)w = 0, and since the weight of w is δ1 we have an isomorphism
|M | ∼= Lb(≺,τ)(δ1) ∼= V as desired.

Case g = ospB(∞|2k), ospD(∞|2k). Recall that g0̄
∼= o(∞)⊕sp(2k) where o(∞) = oB(∞)

or o(∞) = oD(∞), respectively. Assume first that there exists an isomorphism of g0̄-modules
M(i) ∼= Vo � N for some simple finite-dimensional weight sp(∞)-module N . We will show
that, also in this case, |M | is isomorphic to V. Indeed, we have M(i) ∼= Lb(≺,τ)0(δ1 +

∑
λiεi)

for some partition λ = (λ1 ≥ · · · ≥ λk), and support arguments imply that a b(≺, τ)0-highest
weight vector v of M(i) is also a b(≺, τ)-highest weight vector of M . Then Xδ2+ε1v = 0, and
again using support arguments we obtain X−δ2−ε1v = 0. Hence

0 = hδ2+ε1v = −λ1v,

which implies λ = 0. Consequently, |M | ∼= Lb(≺,τ)(δ1) ∼= V.
Assume now there is an isomorphism of g0̄-modules M(i) ∼= SBA � N for some simple

finite-dimensional weight sp(∞)-module N . We claim that this cannot happen. Recall the
map σ and the weight ωA from case 1 above. Then we have an isomorphism of g0̄-modules
M(i) ∼= Lb(≺,σ)0(ωA+

∑
λiεi) for some partition λ. Support arguments imply that a b(≺, σ)0-

highest weight vector v of M(i) is also a b(≺, σ)-highest weight vector of M . Hence

|M | ∼= lim−→Lb(<n,τ)(ν(n) +
∑

λiεi),

where ν(n) is a half-integer weight for every n. In particular, Lb(<n,τ)(ν(n) +
∑
λiεi) is a

g(n)-submodule of |M | for any n larger than the length of the partition λ. But a neces-
sary condition for Lb(<n,τ)(ν(n) +

∑
λiεi) to be finite dimensional is λk ≥ n (see [Kac78,

Proposition 2.3]). Since λ is a finite partition and n → ∞, this yields a contradiction as
desired.

Case g = ospB(2|∞). Recall that g0̄
∼= C ⊕ sp(∞). Suppose that for some i there is an

isomorphism of g0̄-modules M(i) ∼= Ccδ1 � Vsp, where Ccδ1 is a 1-dimensional C-module of
weight cδ1. In other words, we have M(i) ∼= Lb(<,τ)0(cδ1 + ε1). Let v be a b(<, τ)0-highest
weight vector of M(i). Then Xδ1−ε1v = 0 or Xδ1−ε1v = w 6= 0. In the former case, v is
a b(<, τ)-highest weight vector of M , and M ∼= Lb(<,τ)(cδ1 + ε1). In the latter case, w a
b(<, τ)-highest weight vector of M , and |M | ∼= Lb(<,τ)((c+ 1)δ1).

Let’s prove that an isomorphism |M | ∼= Lb(<,τ)(cδ1 + ε1) is contradictory. Our argument
relies on some material reviewed in Section 6.2 below. Consider the Kac module K(cδ1 + ε1)
and notice that there is a canonical surjective homomorphism K(cδ1 +ε1)→ Lb(<,τ)(cδ1 +ε1)
which is an isomorphism whenever Lb(<,τ)(cδ1 + ε1) is typical. Since K(cδ1 + ε1) is not a
bounded g-module (in fact, this module does not have finite-dimensional weight spaces), we
obtain that Lb(<,τ)(cδ1 + ε1) has to be atypical. This means that c ∈ {−1, 1, 2, . . .}. Then
X−δ+ε2v 6= 0, since otherwise

0 = hδ−ε2v = −cv,
which is a contradiction. Thus (c|1, 1, 0 . . .) is a weight of Lb(<,τ)(cδ1 + ε1), and support
arguments imply that Lb(<,τ)(cδ1 + ε1) is not bounded.

Next we consider the case where |M | ∼= Lb(<,τ)(cδ1). Again, since the nontrivial g-module
Lb(<,τ)(cδ1) must be atypical, we have c ∈ Z≥1. We claim that c = 1. Indeed, if c ∈ Z≥2 then
w = X−δ−ε1v 6= 0, since hδ+ε1v = cv 6= 0. If Xδ+ε2w 6= 0, then (2| − 1, 1, 0, . . .) is a weight of
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Lb(<,τ)(cδ1), and support arguments show that Lb(<,τ)(cδ1) is not bounded. If Xδ+ε2w = 0,
then X−δ−ε2w 6= 0 (since hδ+ε2w = w 6= 0) and (0| − 1,−1, 0, . . .) is a weight of Lb(<,τ)(cδ1).
Again, if this is so, support arguments imply that Lb(<,τ)(cδ1) is not bounded. Therefore,
c = 1 and |M | ∼= Lb(<,τ)(δ1) ∼= V.

Case g = sp(∞). Recall that g0̄
∼= sl(∞). Suppose first that, for some i, there is an

isomorphism of g0̄-modules M(i) ∼= SµV for a partition µ = (µ1 ≥ · · · ≥ µk). Let v0 ∈ SµV
be a b(<)0̄-highest weight vector of M(i), and let u ∈ U(g1) be a longest monomial of the
form · · ·X t4

ε2+ε3X
t3
2ε2
X t2
ε1+ε2X

t1
2ε1

with ti ∈ {0, 1} such that uv0 6= 0. Such a monomial exists
since the vectors of the form uv0 lie in sl(∞)-submodules of M isomorphic (up to parity)
to SνV for certain partitions ν, where the length of ν grows along with the length of the
monomial. Thus, the non-existence of a monomial u of maximal length with uv0 = 0 would
imply that M is not bounded. Notice that uv0 is a b(<)-highest weight vector of M , and
hence we have an isomorphism of g-modules |M | ∼= Lb(<)(

∑`
j=1 γiεj) for some γ ∈ C∞ such

that γ1 ≥ γ2 ≥ . . . ≥ γ`.
We claim that γj = 0 for all j ≥ 2. Indeed, let j � 0 such that γj = 0. Then, since v

is b(<)-highest weight, we have Xε2+εjv = 0. On the other hand, support arguments show
that X−ε2−εjv = 0. Thus

0 = hε2+εjv = γ2v,

which implies γj = 0 for all j ≥ 2. If j = 1, then similarly we have Xε1+ε2v = 0. But
now X−ε1−ε2v = 0 if and only if γ1 6= 1. In other words, we have an isomorphism |M | ∼=
Lb(<)(ε1) ∼= V.

If M(i) ∼= SµV∗, then we prove in a similar way an isomorphism |M | ∼= Lb(>)(−ε1) ∼= V.
Next we assume that there is an isomorphism of g0̄-modulesM(i) ∼= Λ

∞
2
A V for some i. Let

≺ be a linear order on Z>0 satisfying the following conditions: A ≺ (Z>0 \ A), and for any
i, j ∈ A (respectively, i, j ∈ Z>0 \ A) we have |{p ∈ A | i ≺ p ≺ j}| <∞ (respectively, |{p ∈
Z>0 \ A | i ≺ p ≺ j}| < ∞). Therefore we can write Z>0 = {jn1 ≺ jn2 ≺ · · · ≺ jN2 ≺ jN1},
where A = {jn1 ≺ jn2 ≺ · · · } and Z>0 \ A = {· · · ≺ jN2 ≺ jN1}. Let τ : Z>0 → {1}, and let
v ∈ Λ

∞
2
A V be a b(≺, τ)0-highest weight vector. In particular, the weight of v is εA :=

∑
j∈A εj.

Since X2εin1
is a b(≺, τ)0-highest weight vector of g1, we must have w = X2εin1

v = 0, as
otherwise w would be a b(≺, τ)0-singular vector of M of weight 3εin1

+ εA\{in1}, which is
a contradiction, as sl(∞) does not admit any simple bounded highest weight module with
such a weight. Similarly, we must also have X−εiN1

−εiN2
v = 0.

Take now n � 0 so that jn1 , jN1 ∈ [1, n]. Using that X2εjn1
v = 0, and that sl(∞)

does not admit a simple bounded integrable highest weight module with highest weight
2εjn1

+ 2εjn2
+ εA\{jn1 ,jn2}, we obtain that Xεjn1

+εjn2
v = 0. Continuing this way, one shows

that
X2εjv = Xεjt+εjt+1

v = 0, for every j, t ∈ [1, n].

On the other hand, for jm, jm+1 ∈ [1, n] such that jm ∈ A and jm+1 /∈ A, we can use support
arguments to obtain that X−εjm−εjm+1

v = 0. Thus we have proved that X±(εjm+εjm+1
)v = 0.

Since jm+1 /∈ A, this yields the following contradiction

0 = hεjm−εjm+1
v = −v.

In conclusion, the isomorphism of g0̄-modules M(i) ∼= Λ
∞
2
A V is contradictory.
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Finally, assume that, for some i, we have an isomorphism of g0̄-modules M(i) ∼= S∞A V
for an infinite set A = {a1 ≤ a2 ≤ · · · } ⊆ Z>0. For n � 0, let wn ∈ M(i) denote the
equivalence class a b(<n)0-highest weight vector of a g(n)0̄-submodule of M(i) isomorphic
to Lb(<n)0(anε1). Consider W = U(g(n))wn and let w ∈ W be a b(<n)-singular weight
vector of W . In particular, w is a b(<n)0-singular weight vector, and hence, it must have
weight of the form bnε1 for some bn ≥ an. Thus Xε1+ε2w = 0, and support arguments imply
X−ε1−ε2w = 0. But this yields a contradiction

0 = hε1−ε2w = bnw.

A similar argument shows that an isomorphism of g0̄-modules M(i) ∼= S∞A V∗ is also
contradictory. �

6. The category BInt

Let BInt denote the full subcategory of g-mod whose objects are integrable bounded weight
g-modules.

6.1. The case g � sl(∞|1).

Theorem 6.1. Let g equal sl(∞|m) withm ∈ {Z>1,∞}, ospB(∞|∞), ospB(∞|2k), ospB(m|∞),
ospC(2|∞), ospD(∞|∞), ospD(∞|2k), ospD(m|∞), or sp(∞). Then the category BInt is
semisimple.

Proof. Let g = sl(∞|m) with m ∈ {Z>1,∞} and let M and N be two simple objects in
BInt. By Theorem 5.9, M ∼= lim−→Mn and N ∼= lim−→Nn are locally simple. Since M and N are
isomorphic to modules appearing in (Ω′1)-(Ω′6), Lemma 5.2 implies that Ext1

g(n),h(n)(Mn, Nn) =
0 for n� 0. Now the claim follows from Corollary A.3.

If g � sl(∞|m), the result follows from Theorem 5.14 and Corollary A.3 by noting that
all Exts between the modules Vn, ΠVn, C or ΠC vanish for all n. �

Theorem 6.2. If g = q(∞) and M and N are two non-isomorphic objects of BInt, then
Ext1

g,h(M,N) = 0 and

Ext1
g,h(M,M) =

{
0 if M 6∼= ΠM

C if M ∼= ΠM
.

Proof. Recall from Theorem 5.12 that any integrable bounded simple weight g-module is
isomorphic to

Lb(<)(
k∑
i=1

γiεi) ∼= lim−→Lb(<n)(
k∑
i=1

γiεi) or Lb(>)(
k∑
i=1

−γiεi) ∼= lim−→Lb(>n)(
k∑
i=1

−γiεi)

for some partition γ = (γ1 > γ2 > · · · > γk). Let vM and vN be the respective highest weight
vectors of M and N . Then the q(n)-modules U(q(n))vM and U(q(n))vN for n � 0 have
different central characters. This follows from A. Sergeev’s description [Ser83] of the center
of U(q(n)). Corollary A.3 in the Appendix implies now Ext1

g,h(M,N) = 0.
Our statement about Ext1

g,h(M,M) follows directly from [GS20]. There the authors con-
sider the case of q(n) but present an argument that extensions over q(n) extend to q(n+ 1),
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i.e., in fact prove that

Ext1
g,h(M,M) =

{
0 if M 6∼= ΠM

C if M ∼= ΠM
. �

6.2. Kac modules and the case g = sl(∞|1). We start by recalling the definition of Kac
module. Assume g equals sl(∞|m) for m ∈ Z≥1 ∪ {∞}, or ospC(2|∞). Put g+ :=

⊕
i≥0 gi

and g≷ :=
⊕

i≷0 gi, where gi is defined in Section 2. Let L be a simple weight g0-module.
Set g>L = 0. The Kac module (cf. [Kac78]) is the induced g-module

K(L) := U(g)⊗U(g+) L.

The Kac module Kn(Ln) for g(n) is defined similarly. When L ∼= Lb(<)0̄
(λ), the module

K(L) is usually denoted by K(λ). The module K(L) is indecomposable and admits a
unique maximal proper submodule N(L), yielding the short exact sequence

0→ N(L)
f−→ K(L)

g−→ L(L)→ 0

where L(L) := K(L)/N(L). Similarly, Kn(Ln) has a unique maximal proper submodule
Nn(Ln), and Ln(Ln) := Kn(Ln)/Nn(Ln).

Proposition 6.3. Let φn,n+1 : Ln ↪→ Ln+1 be an embedding of g(n)0-modules, and consider
the embedding of g(n)-modules ϕn,n+1 : Kn(Ln) ↪→ Kn+1(Ln+1) mapping u⊗v to u⊗φn,n+1(v)
for all u ∈ U(g(n)), v ∈ Ln. Then ϕn,n+1(Nn(Ln)) ⊆ Nn+1(Ln+1) and ϕn,n+1 induces an
embedding of g(n)-modules ψn,n+1 : Ln(Ln) ↪→ Ln+1(Ln+1).

Proof. Set Nn = Nn(Ln). We claim that U(g(n + 1))ϕn,n+1(Nn) is a proper submodule of
Kn+1(Ln+1). Indeed, Nn ⊆ U(g(n)−1)+ ⊗ Ln, where U(g(n)−1)+ denotes the augmentation
ideal of U(g(n)−1), and hence it is clear that g(n + 1)−1ϕn,n+1(Nn) ⊆ U(g(n + 1)−1)+ ⊗
Ln+1. Now we show that g(n + 1)+ϕn,n+1(Nn) ⊆ U(g(n + 1)−1)+ ⊗ Ln+1. For this it is
enough to prove that Xαϕn,n+1(Nn) ⊆ U(g(n + 1)−1)+ ⊗ Ln+1, where Xα is a simple root
vector of g(n + 1) \ g(n). Since Xα commutes with g(n)−1 we obtain Xαϕn,n+1(Nn) ⊆
XαU(g(n)−1)+ ⊗ φn,n+1(Ln) ⊆ U(g(n)−1)+ ⊗XαLn+1 ⊆ U(g(n)−1)+ ⊗Ln+1. Therefore, the
map ψn,n+1(v +Nn) = ϕn,n+1(v) +Nn+1 defines the desired embedding. �

Corollary 6.4. Let L := lim−→Ln be a locally simple weight g0-module. Then N(L) =
lim−→Nn(Ln), and L(L) ∼= lim−→ψ

Ln(Ln) where the latter limit is taken over the sequence of
embeddings {Ln(Ln) ↪→ Ln+1(Ln+1)} provided by Proposition 6.3. Moreover, L(L)g1 =
lim−→Ln(Ln)g(n)1 ∼= L.

Proof. Proposition 6.3 implies that the following diagram of g(n)-modules is commutative

0 Nn(Ln) Kn(Ln) Ln(Ln) 0

0 Nn+1(Ln+1) Kn+1(Ln+1) Ln+1(Ln+1) 0.

fn

ϕn,n+1

gn

ϕn,n+1 ψn,n+1

fn+1 gn+1

Since, for every n, the g(n)-module Nn(Ln) is the unique maximal proper submodule of
Kn(Ln), we conclude that N(L) = lim−→Nn(Ln) and L(L) ∼= lim−→ψ

Ln(Ln). The claim that
L(L)g1 = lim−→Ln(Ln)g(n)1 ∼= L follows from the fact that Ln(Ln)g(n)1 ∼= Ln.

�
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Observe that for g = sl(∞|m) with m ∈ Z≥2 ∪ {∞} or g = ospC(2|∞), the Kac module
K(L) is not bounded for any choice of L since Λ(g−1) :=

⊕∞
k=0 Λk(g−1) is not bounded as a

g0-module (in fact, K(L) does not have finite-dimensional weight spaces).
Assume that M = lim−→Lb(<n)(λ(n)) is a locally simple integrable g-module for a given

chain of embeddings of g(n)-modules Lb(<n)(λ(n)) ↪→ Lb(<n+1)(λ(n+1)). We call the module
M typical if there exists N ∈ Z>0 for which (λ(n) + ρn, β) 6= 0 for every β ∈ ∆(n)1 and
n ≥ N , and atypical otherwise. Suppose in addition that L = lim−→Lb(<n)0̄

(λ(n)) and the
embeddings Lb(<n)(λ(n)) ↪→ Lb(<n+1)(λ(n + 1)) are defined as in Proposition 6.3. Then if
M = lim−→Lb(<n)(λ(n)) is typical, there is an isomorphism of g-modules M ∼= K(L). This
follows from the well known fact that Kn(λ(n)) is simple whenever (λ(n) + ρn, β) 6= 0 for all
β ∈ ∆(n)1.

A weight µ(n) ∈ h(n)∗ is singly atypical if (µ(n), β) = 0 for a unique pair of mutually
opposite odd roots ±β ∈ ∆(n)1. It is known that if g(n) equals sl(m|1) or osp(2|2n) and λ(n)
dominant integral, then the g(n)-module Lb(<n)(λ(n)) is atypical if and only if the weight
λ(n) + ρn is singly atypical with respect to an odd root αn. In the latter case the module
Kn(λ(n)) has length 2 and its maximal proper submodule is isomorphic to ΠpnLb(<n)(λ(n)αn),
where the weight λ(n)αn is obtained by subtracting from λ(n) a sum of positive odd roots
which are uniquely determined by λ(n) (see [VdJHKTM90, § 6 and 7] for details). Moreover,
if β1 + · · · + βkn is this sum of odd roots then pn = kn. We also notice that λ(n)αn can be
obtained from λ(n) by a legal move of weight zero (see [MS11, Corollary 6.4] where there is
a typo in the statement: it should be λ(f) > λ(g)). Since for sl(m|1) and osp(2|2n) there is
at most one such legal move, there is no ambiguity in defining λ(n)αn in this way.

Corollary 6.5. Suppose g equals sl(∞|1) or ospC(2|∞). Let L = lim−→Lb(<n)0(λ(n)) be any
locally simple integrable weight g0-module. Then either N(L) = 0 and L(L) ∼= K(L), or
N(L) ∼= lim−→ΠpnLb(<n)(λ(n)α). In particular, the g-module K(L) is either simple or has
length 2.

Proof. The statement follows from the above discussion and Corollary 6.4. �

Let C be the category of weight modules with finite-dimensional weight spaces over g or
g(n). For any M ∈ C we can consider the restricted dual g-module M∗ ∈ C which is defined
in (A.1). The functor M 7→ M∗ defines a contravariant auto-equivalence of C. Next, let ω
be the automorphism of g defined by taking the direct limit of the automorphisms defined
in [Mus12, § 5.2], and let M∨ denote the g-module M∗ with action twisted by ω (see [MS11,
pg. 20]). The functor M → M∨ is also a contravariant auto-equivalence of C, now with the
additional property that S∨ ∼= S for all simple modules S ∈ C.

We will show that, up to applying Π, the following example provides all nontrivial exten-
sions between simple objects of BInt for g = sl(∞|1).

Example 6.6. Let g = sl(∞|1) and C = lim−→Lb(<n)0(0(n)|0) be the trivial one-dimensional
g0 = gl(∞)-module. For every n, the weight ρn ∈ h(n)∗ is singly atypical with respect to
the odd root α = δ1 − ε, and (0(n)|0)α = −α = (0(n−1),−1|1). Then

N(C) ∼= lim−→ΠLb(<n)(0
(n−1),−1|1) ∼= lim−→ΠLb(<n)(1

(n−1), 0|0) ∼= lim−→ΠΛn−1Vn,
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and in the category of bounded weight modules over sl(∞|1) we have the following non-split
short exact sequence

0→ Λ∞AV→ K(C)→ C→ 0,

where A is the sequence of ordered pairs (an = n − 1, bn = 1) for all n ∈ Z>1. Application
of (·)∗ on this short exact sequence yields the non-split short exact sequence

0→ C→ K(C)∗ → Λ∞AV∗ → 0,

where Λ∞AV∗
∼= lim−→ΠΛn−1V∗n

∼= lim−→Lb(<n)(0
(n)|1− n).

Set λ(n) := (0(n)|1 − n), µ(n) := (−1(n)|1) and ν(n) := (−1(n−1),−2|2) (here we choose
representatives of the weights defining Λ∞AV∗, C and Λ∞AV, respectively, so that the action
of the center of gl(n|1) on the modules Lgl(λ(n)), Lgl(µ(n)) and Lgl(ν(n)) coincides, see
Remark 5.1). Then we have a sequence of legal moves of weight zero:

fλ(n) → fµ(n) → fν(n).

Moreover, we can check that if γ(n) is a weight such that fγ(n) → fλ(n) or fν(n) → fγ(n), then
lim−→Lb(<n)(γ(n)) is not an object in BInt. Thus the sequence fλ(n) → fµ(n) → fν(n) is maximal
with the property that all objects lim−→L(<n)(λ(n)), lim−→L(<n)(µ(n)) and lim−→L(<n)(ν(n)) are
in BInt. �

In the following proposition we assume that g = sl(∞|1). Let L = lim−→Lb(<n)0(λ(n)),
L′ = lim−→Lb(<n)0(µ(n)) be locally simple integrable weight g0-modules and p, q ∈ {0, 1}.
Assume also that M := ΠpL(L) and N := ΠqL(L′) have finite-dimensional weight spaces.

Proposition 6.7. IfM = ΠpL(L) and N = ΠqL(L′), then dim Ext1
g,h(M,N) ≤ 1. Moreover,

dim Ext1
g,h(M,N) = 1 precisely when, for sufficient large n, all λ(n) + ρn are singly atypical

with respect to an odd root αn and µ(n) = λ(n)αn, or vice-versa. In the latter case, if
E is a nontrivial extension of M by N , then either E ∼= ΠpK(L) and N ∼= ΠpN(L), or
E ∼= (ΠqK(L′))∨ and M ∼= ΠqN(L′).

Proof. Let 0 → N → E → M → 0 be a non-split short exact sequence. Since the category
of integrable weight g0-modules with finite-dimensional weight spaces is semisimple (see
Lemma 4.1), we can regard M g1 ∼= L and N g1 ∼= L′ as simple g0-submodules of E. As E is
a nontrivial extension, we obtain E = U(g)L, and we have two possibilities: (1) g1L = 0 or
(2) g1L 6= 0.

(1): There exists a surjective map of g-modules ΠpK(L)→ E. Since Corollary 6.5 implies
that ΠpK(L) has length 2 precisely when for sufficiently large n the weights λ(n) + ρn are
singly atypical with respect to odd roots αn (possibly depending on n), we conclude that
E ∼= ΠpK(L) and µ(n) = λ(n)αn .

(2): Consider the non-split exact sequence 0 → M → E∨ → N → 0. Then E∨ =
U(g)L′ and support arguments imply that g1L

′ = 0. Indeed, first notice that SuppE =
SuppM ∪ SuppN and set ∆(g+) := {β ∈ ∆ | gβ ⊆ g+}. Now, for any fixed λ ∈ SuppL,
λ′ ∈ SuppL′ we have SuppM ⊆ λ − Z≥0∆(g+) and SuppN ⊆ λ′ − Z≥0∆(g+). Since
g1L 6= 0 by assumption, we have g1L ∩ N 6= 0. Thus λ ∈ λ′ − Z≥0∆(g+), and hence
SuppE ⊆ λ′ − Z≥0∆(g+). Therefore g1L

′ = 0, and as in (1) we obtain an isomorphism of
g-modules E∨ ∼= ΠqK(L′), from which we conclude that E ∼= (ΠqK(L′))∨ and λ(n) = µ(n)αn

for all sufficient large n. �
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Recall that two simple modules M,N ∈ BInt are in the same block if and only if M ∼= N ,
or there are simple modules M = L1, L2, . . . , Lk = N of BInt such that Ext1

BInt(Li, Li+1) 6= 0
for all i = 1, . . . , k− 1. The block of M ∈ BInt will be denoted by [M ]. A block [M ] is trivial
if [M ] = {M}. The next result describes the blocks of simple modules in BInt.

Corollary 6.8. Up to application of Π, the only nontrivial block of simple modules in BInt

is [C] = [Λ∞AV] = [Λ∞AV∗] = {C,Λ∞AV,Λ∞AV∗}, where A is the sequence of ordered pairs
(an = n− 1, bn = 1) for all n ∈ Z>1.

Proof. Corollary 5.10 implies that it is enough to compute the blocks [C], [SµV], [S∞AV],
[Λ∞AV], [Lb(>)(0

(∞)|a)] and [Lb(<)(0
(∞)|a)] for a ∈ C\Z. The other cases will follow by appli-

cation of (·)∗ and possibly Π. Since the weight (0(∞)|a) for a ∈ C \ Z is typical we conclude
that [Lb(<)(0

(∞)|a)] = {Lb(<)(0
(∞)|a)} and [Lb(>)(0

(∞)|a)] = {Lb(>)(0
(∞)|a)}. The g-modules

C, SµV, S∞AV and Λ∞AV can be obtained as respective direct limits lim−→ψ
Lb(<n)0(λ(n)) where

the weights λ(n) of the three latter modules are as in (Ω1), (Ω4) or (Ω5), respectively. Now,
we can check: (1) for sufficiently large n, all weights λ(n) + ρn are atypical with respect to
α = δ1 − ε, and in particular λ(n)α = λ(n)− α; (2) if lim−→ψ

Lb(<n)0(λ(n)) � C,Λ∞AV∗ where
A is as in the statement, then for any c ∈ C the weights λ(n)α + (c(n)| − c) do not occur as
b(<n)-highest weights of modules in (Ω′1)-(Ω′6), nor do they define the trivial module C; (3)
if lim−→ψ

Lb(<n)0(λ(n)) � C,Λ∞AV, where A is as in the statement and if µ(n) is a sequence
of weights such that fµ(n) → fλ(n), then for any c ∈ C the weights µ(n) + (c(n)| − c) do not
occur as b(<n)-highest weights of modules in (Ω′1)-(Ω′6). Finally, (1)-(3) and Proposition 6.7
imply that up to application of Π the only nontrivial extensions of simple objects in BInt are
given in Example 6.6. The statement follows. �

Appendix A.

For every n ∈ Z>0, let g(n) be a finite-dimensional Lie superalgebra and let h(n) ⊆ g(n)0̄

be a fixed toral subalgebra of g(n)0̄, that is, each nonzero element of h(n) acts semisimply on
g(n) under the adjoint representation. It is well known that h(n) is an abelian subalgebra of
g(n) and that h(n) acts semisimply on g(n) under the adjoint representation. An h(n)-weight
g(n)-module is by definition a g(n)-module on which h(n) acts semisimply.

An embedding of Lie superalgebras ϕ : g(n) ↪→ g(n + 1) is an h(n)-weight embedding if
ϕ(h(n)) ⊆ h(n+1) and ϕ maps every h(n)-weight space of g(n) into one h(n+1)-weight space
of g(n+ 1). In this section, we assume that g is a Lie superalgebra isomorphic to the direct
limit of a chain of weight embeddings g(n) ↪→ g(n + 1). Although we are mainly interested
in the Lie superalgebras listed in Section 2, the class of Lie superalgebras we consider here
is much more general, for instance g(n) may be a simple finite-dimensional Lie superalgebra
of Cartan type.

Define
U0 := CU(g)(h), U0

n := U0 ∩U(g(n)) for every n ∈ Z>0.

The following Lemma is a version of [GP20, Lemma 4.2].

Lemma A.1. If M is a finite-dimensional simple U0-module, then there exists K > 0 such
that M is a simple U0

n-module for every n > K.
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Proof. The U0-module structure on M provides a sequence of maps φn : U0
n → EndM such

that imφn ⊆ imφk for k ≥ n. Since dimM < ∞, there exists K ∈ N with imφn = imφk
for every n ≥ K. The simplicity of M as an U0-module implies, via the Jacobson Density
Theorem, that im(φ : U0 → EndM) = EndM . Since U0 =

⋃
n≥1 U

0
n, we have imφ =⋃

n≥1 imφn = imφK . Therefore imφK = EndM , and the statement is proved. �

Let L =
⊕

µ∈h∗ L
µ be an h-weight g-module with finite-dimensional h-weight spaces Lµ.

Define

(A.1) L∗ :=
⊕
µ∈h∗

(Lµ)∗ ⊆ L∗.

Then for any α ∈ Supp g, x ∈ gα, and λ ∈ SuppL, we have x(Lλ)∗ ⊆ (Lλ+α)∗. Therefore L∗
is an h-weight g-submodule of L∗.

In what follows we consider the extension groups Extig,h(M,N) in the category of h-weight
g-modules (see for instance [Fuk86] and also [Mus12]).

The following proposition is due to V. Serganova.

Proposition A.2. Assume that M and L are h-weight g-modules and that L has finite-
dimensional weight spaces. Then Extig,h(M,L) = (Hi(g, h;M ⊗ L∗))∗ for any i ∈ Z≥0.

Proof. Since dimLµ <∞ for every weight µ, we have

Homh(M,L) = Homh

(⊕
λ

Mλ,
⊕
µ

Lµ

)

=
∏
λ

((Mλ)∗ ⊗ Lλ) =

(⊕
λ

Mλ ⊗ (Lλ)∗

)∗
=
(
(M ⊗ L∗)h

)∗
,

(A.2)

where Homh stands for parity preserving homomorphisms of h-modules. The statement now
follows from to the fact that Extig,h(M,L) := H i(g, h; HomC(M,L)) can be computed through
the cochain complex

Ci := Homh(Λ
i(g/h)⊗M,L) ∼=

(
(Λi(g/h)⊗M ⊗ L∗)h

)∗
= C∗i ,

Ci being the chain complex computing the relative homology Hi(g, h;M ⊗ L∗). �

Corollary A.3. Let M = lim−→Mn and L = lim−→Ln be h-weight g-modules, and assume that
L has finite-dimensional h-weight spaces. If Extig(n),h(n)(Mn, Ln) = 0 for all n � 0 then
Extig,h(M,L) = 0.

Proof. This follows directly from Proposition A.2:

Extig,h(M,L) = (Hi(g, h;M ⊗ L∗))∗

= (lim−→Hi(g(n), h(n);Mn ⊗ L∗n))∗

= lim←−(Hi(g(n), h(n);Mn ⊗ L∗n)∗)

= lim←−Extig(n),h(n)(Mn, Ln) = 0. �

The following result reproves [PS11, Theorem 3.7].
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Corollary A.4. Let g equal a direct limit of finite-dimensional semisimple Lie algebras. If
M = lim−→Mn and L = lim−→Ln, where Mn and Ln are finite-dimensional h(n)-weight g(n)-
modules and L has finite-dimensional h-weight spaces, then Ext1

g,h(M,L) = 0.

Remark A.5. If g = osp(1|∞), then Corollary A.4 also holds, since the category of finite-
dimensional osp(1|2n)-modules is semisimple for all n ∈ Z>0. �

Remark A.6. We would like to point out also that Corollary A.3 does not hold without
the assumption of finite-dimensionality of weight spaces. For instance,

Ext1
Tsl(∞)

(C, sl(∞)) 6= 0

where Tsl(∞) is the category of sl(∞)-modules studied in [PS11, D-CPS16, PSty11]. �
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